Martina Sánchez-Pinillos, Sonia Kéfi, Miquel De Cáceres, Vasilis Dakos
{"title":"Ecological dynamic regimes: Identification, characterization, and comparison","authors":"Martina Sánchez-Pinillos, Sonia Kéfi, Miquel De Cáceres, Vasilis Dakos","doi":"10.1002/ecm.1589","DOIUrl":null,"url":null,"abstract":"<p>Understanding ecological dynamics has been a central topic in ecology since its origins. Yet, identifying dynamic regimes remains a research frontier for modern ecology. The concept of ecological dynamic regime (EDR) emerged to emphasize the dynamic property of steady states in nature and refers to the fluctuations of ecosystems around some trend or average. Identifying and characterizing EDRs is of utmost importance in the current context of global change since they form the reference against which post-disturbance dynamics must be compared to assess ecological resilience. However, the implementation of EDRs in empirical science is still challenging given the high dimensionality and stochasticity of ecological data and the large volume of data required to distinguish stochastic dynamics from general and predictable dynamics. The era of big data and the recent advances in quantitative ecology and data science offer an opportunity to study dynamic regimes using empirical approaches from a new perspective. This paper presents a novel methodological framework to describe EDRs from a set of ecological trajectories defined by the temporal changes of state variables in a multidimensional state space. In our framework, we formally define EDRs and include analytical tools to identify, characterize, and compare EDRs based on their geometric characteristics. More specifically, we propose different ways to identify EDRs from empirical data, develop a new algorithm to identify representative trajectories summarizing the main dynamic patterns, propose a set of metrics to describe the internal distribution of ecological trajectories, and define a dissimilarity index to compare two or more dynamic regimes based on their shape and position in the state space. We used artificial data to illustrate the different elements of our framework and applied our analyses to real data, using permanent sampling plots of Canadian boreal forests as an example. Overall, our framework contributes to filling the gap between theoretical and empirical ecology by providing robust analytical tools to assess ecological resilience and study ecosystem dynamics from a multidimensional perspective and considering the variability of natural systems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1589","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding ecological dynamics has been a central topic in ecology since its origins. Yet, identifying dynamic regimes remains a research frontier for modern ecology. The concept of ecological dynamic regime (EDR) emerged to emphasize the dynamic property of steady states in nature and refers to the fluctuations of ecosystems around some trend or average. Identifying and characterizing EDRs is of utmost importance in the current context of global change since they form the reference against which post-disturbance dynamics must be compared to assess ecological resilience. However, the implementation of EDRs in empirical science is still challenging given the high dimensionality and stochasticity of ecological data and the large volume of data required to distinguish stochastic dynamics from general and predictable dynamics. The era of big data and the recent advances in quantitative ecology and data science offer an opportunity to study dynamic regimes using empirical approaches from a new perspective. This paper presents a novel methodological framework to describe EDRs from a set of ecological trajectories defined by the temporal changes of state variables in a multidimensional state space. In our framework, we formally define EDRs and include analytical tools to identify, characterize, and compare EDRs based on their geometric characteristics. More specifically, we propose different ways to identify EDRs from empirical data, develop a new algorithm to identify representative trajectories summarizing the main dynamic patterns, propose a set of metrics to describe the internal distribution of ecological trajectories, and define a dissimilarity index to compare two or more dynamic regimes based on their shape and position in the state space. We used artificial data to illustrate the different elements of our framework and applied our analyses to real data, using permanent sampling plots of Canadian boreal forests as an example. Overall, our framework contributes to filling the gap between theoretical and empirical ecology by providing robust analytical tools to assess ecological resilience and study ecosystem dynamics from a multidimensional perspective and considering the variability of natural systems.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.