{"title":"Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry","authors":"Alma Mathew, M. Lacey, D. Brandell","doi":"10.33774/chemrxiv-2021-2kgjv","DOIUrl":null,"url":null,"abstract":"Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability is a key parameter to consider. The conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone, and carbonate-sulfone mixtures, all with LiPF6 salt, tested for a potential profile equivalent to LiNi0.5Mn1.5O4 electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-2kgjv","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability is a key parameter to consider. The conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone, and carbonate-sulfone mixtures, all with LiPF6 salt, tested for a potential profile equivalent to LiNi0.5Mn1.5O4 electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.