Validation of a Physics-based Prognostic Model with Incomplete Data

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Prognostics and Health Management Pub Date : 2023-03-11 DOI:10.36001/ijphm.2023.v14i1.3283
A. Meghoe, R. Loendersloot, T. Tinga
{"title":"Validation of a Physics-based Prognostic Model with Incomplete Data","authors":"A. Meghoe, R. Loendersloot, T. Tinga","doi":"10.36001/ijphm.2023.v14i1.3283","DOIUrl":null,"url":null,"abstract":"While the development of prognostic models is nowadays rather feasible, the implementation and validation thereof can still create many challenges. One of the main challenges is the lack of high-quality input data like operational data, environmental data, maintenance data and the limited amount of degradation or failure data. The uncertainty in the output of the prognostic model needs to be quantified before it can be utilised for either model validation or actual maintenance decision support. This study, therefore, proposes a generic framework for prognostic model validation with limited data based on uncertainty propagation. This is realised by using sensitivity indices, correlation coefficients, Monte Carlo simulations and analytical approaches. For demonstration purposes, a rail wear prognostic model is used. The demonstration concludes that by following the generic framework, the prognostic model can be validated, and as a result, realistic maintenance advice can be given to rail infrastructure managers, even when limited data is available.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i1.3283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While the development of prognostic models is nowadays rather feasible, the implementation and validation thereof can still create many challenges. One of the main challenges is the lack of high-quality input data like operational data, environmental data, maintenance data and the limited amount of degradation or failure data. The uncertainty in the output of the prognostic model needs to be quantified before it can be utilised for either model validation or actual maintenance decision support. This study, therefore, proposes a generic framework for prognostic model validation with limited data based on uncertainty propagation. This is realised by using sensitivity indices, correlation coefficients, Monte Carlo simulations and analytical approaches. For demonstration purposes, a rail wear prognostic model is used. The demonstration concludes that by following the generic framework, the prognostic model can be validated, and as a result, realistic maintenance advice can be given to rail infrastructure managers, even when limited data is available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不完全数据下基于物理的预后模型的验证
虽然目前发展的预测模型是相当可行的,但其实施和验证仍然可以创造许多挑战。其中一个主要挑战是缺乏高质量的输入数据,如运行数据、环境数据、维护数据以及数量有限的退化或故障数据。在用于模型验证或实际维护决策支持之前,需要对预测模型输出中的不确定性进行量化。因此,本研究提出了一个基于不确定性传播的有限数据预测模型验证的通用框架。这是通过使用灵敏度指数、相关系数、蒙特卡罗模拟和分析方法来实现的。为了演示目的,使用了钢轨磨损预测模型。该演示的结论是,通过遵循通用框架,预测模型可以得到验证,因此,即使在可用数据有限的情况下,也可以向铁路基础设施管理人员提供现实的维护建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
期刊最新文献
Accelerated Life Testing Dataset for Lithium-Ion Batteries with Constant and Variable Loading Conditions Auxiliary Particle Filter for Prognostics and Health Management Fault- Tolerant DC-DC Converter with Zero Interruption Time Using Capacitor Health Prognosis RUL Prognostics The Study of Trends in AI Applications for Vehicle Maintenance Through Keyword Co-occurrence Network Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1