Contactless Air-Filled Mode Selective Transmission Line

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Microwave and Wireless Components Letters Pub Date : 2022-11-01 DOI:10.1109/LMWC.2022.3179872
Xiao-he Cheng, Tingting Xie, Yuan Yao, Yaohui Yang, Ting Zhang, Junsheng Yu, Xiao-dong Chen
{"title":"Contactless Air-Filled Mode Selective Transmission Line","authors":"Xiao-he Cheng, Tingting Xie, Yuan Yao, Yaohui Yang, Ting Zhang, Junsheng Yu, Xiao-dong Chen","doi":"10.1109/LMWC.2022.3179872","DOIUrl":null,"url":null,"abstract":"An air-filled mode selective transmission line (AF-MSTL) consisting of an opened groove gap waveguide (GWG) and an inverted coplanar waveguide (CPW) is proposed in this letter. By using the electromagnetic band gap (EBG) structure, the electrical contacts of AF-MSTL are not required during the assembly process. To verify the design, the AF-MSTL prototype, connected to two designed grounded-CPW (GCPW) to AF-MSTL transitions to build a back-to-back structure, has been fabricated and measured. A measured insertion loss of 0.2857 dB/mm at 110 GHz is achieved, which is lower than the dielectric filled (DF) MSTL of 0.5012 dB/mm at 110 GHz.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1291-1294"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3179872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

An air-filled mode selective transmission line (AF-MSTL) consisting of an opened groove gap waveguide (GWG) and an inverted coplanar waveguide (CPW) is proposed in this letter. By using the electromagnetic band gap (EBG) structure, the electrical contacts of AF-MSTL are not required during the assembly process. To verify the design, the AF-MSTL prototype, connected to two designed grounded-CPW (GCPW) to AF-MSTL transitions to build a back-to-back structure, has been fabricated and measured. A measured insertion loss of 0.2857 dB/mm at 110 GHz is achieved, which is lower than the dielectric filled (DF) MSTL of 0.5012 dB/mm at 110 GHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非接触充气式选择性输电线路
本文提出了一种由开口槽隙波导(GWG)和倒置共面波导(CPW)组成的充气模式选择传输线(AF-MSTL)。通过使用电磁带隙(EBG)结构,在组装过程中不需要AF-MSTL的电接触。为了验证设计,已经制造并测量了AF-MSTL原型,该原型连接到两个设计的接地CPW(GCPW)到AF-MSTL的过渡,以构建背靠背结构。在110 GHz时,测得的插入损耗为0.2857 dB/mm,低于110 GHz时0.5012 dB/mm的介质填充(DF)MSTL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
期刊最新文献
A Broadband Ka-Band Waveguide Magic-T With Compact Inner Ridge Matching A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology A Low Power Sub-GHz Wideband LNA Employing Current-Reuse and Device-Reuse Positive Shunt-Feedback Technique Accurate Magnetic Coupling Coefficient Modeling of 3-D Transformer Based on TSV Effect of Different Shapes on the Measurement of Dielectric Constants of Low-Loss Materials With Rectangular Waveguides at X-Band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1