{"title":"Innovative sensor system and evaluation procedure for monitoring of food processing","authors":"R. Seifert, H. Keller, H. Kohler","doi":"10.4172/2157-7110-C1-109","DOIUrl":null,"url":null,"abstract":"There is a broad field of economic online and in-situ field analysis applications like the online monitoring of volatile components for quality monitoring in food processing. Looking to beer production, for example, the quality of the raw materials like grain, hops and yeast have to be investigated because these items could be the source of a contamination with 2,4,6-Trichloranisol (TCA). TCA is a chloric aromatic hydrocarbon with intensive mildewed and moldy smell and, therefore, leads to immense damage of the product not only limited to beer production. Another field of application is the monitoring of food transport and store chains to guarantee the quality of food and to avoid harm for the consumers. Typically, Volatile Organic Compounds (VOCs) are often evaporated, which can be measured by sophisticated gas sensor systems and therefore used for investigations of the mentioned problems. The purpose of this paper is to introduce a sophisticated sensor system which was developed to measure VOCs. The principal sensing element is a four-fold sensor array on a 4x4 mm2 alumina chip (Figure 1), which comprises four micro-dispensed thickfilm sensing layers of different SnO2/additive-composites. Operating MOG sensors thermo-cyclically and simultaneous sampling of the conductance yields gas specific Conductance-over-Time-Profile (CTP) features. Further-more, an innovative calibration and evaluation procedure ProSens will be introduced, which enables substance identification and concentration determination even in the case of varying environmental conditions from the characteristic CTP shapes. Many field analysis problems like those mentioned above are looking for innovative solutions. The above described sensor chip in combination with the numerical procedure ProSens is a powerful tool to solve existing problems in the area of food monitoring and food processing.","PeriodicalId":90897,"journal":{"name":"Journal of food processing & technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food processing & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7110-C1-109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There is a broad field of economic online and in-situ field analysis applications like the online monitoring of volatile components for quality monitoring in food processing. Looking to beer production, for example, the quality of the raw materials like grain, hops and yeast have to be investigated because these items could be the source of a contamination with 2,4,6-Trichloranisol (TCA). TCA is a chloric aromatic hydrocarbon with intensive mildewed and moldy smell and, therefore, leads to immense damage of the product not only limited to beer production. Another field of application is the monitoring of food transport and store chains to guarantee the quality of food and to avoid harm for the consumers. Typically, Volatile Organic Compounds (VOCs) are often evaporated, which can be measured by sophisticated gas sensor systems and therefore used for investigations of the mentioned problems. The purpose of this paper is to introduce a sophisticated sensor system which was developed to measure VOCs. The principal sensing element is a four-fold sensor array on a 4x4 mm2 alumina chip (Figure 1), which comprises four micro-dispensed thickfilm sensing layers of different SnO2/additive-composites. Operating MOG sensors thermo-cyclically and simultaneous sampling of the conductance yields gas specific Conductance-over-Time-Profile (CTP) features. Further-more, an innovative calibration and evaluation procedure ProSens will be introduced, which enables substance identification and concentration determination even in the case of varying environmental conditions from the characteristic CTP shapes. Many field analysis problems like those mentioned above are looking for innovative solutions. The above described sensor chip in combination with the numerical procedure ProSens is a powerful tool to solve existing problems in the area of food monitoring and food processing.