Transformation of structural defects in semiconductor under action of electromagnetic and magnetic fields causing resonant phenomena

IF 1.1 Q4 QUANTUM SCIENCE & TECHNOLOGY Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 2019-03-30 DOI:10.15407/spqeo22.01.039
G. Milenin
{"title":"Transformation of structural defects in semiconductor under action of electromagnetic and magnetic fields causing resonant phenomena","authors":"G. Milenin","doi":"10.15407/spqeo22.01.039","DOIUrl":null,"url":null,"abstract":"Possible mechanisms of transformation of defects in semiconductor structures under action of electromagnetic radiation in the microwave range and pulsed magnetic field have been analyzed. Electrical-resonance effects under nonthermal action of electromagnetic fields have been considered, namely: resonant detachment of dislocations and destruction of impurity complexes in semiconductor crystals, electrical-resonance transformation of defects in semiconductor crystals under action of weak pulsed magnetic fields; magnetic-resonance effects on defects in semiconductor crystals under action of weak magnetic and electromagnetic fields. It has been shown that alternative interaction mechanisms should be used to explain a large number of reliably established magnetically induced effects and phenomena associated with the nonthermal effects of microwave fields. There are two the most probable mechanisms: (i) spin-dependent reactions of paramagnetic defects in semiconductor crystals, as a result of which detachment and subsequent movement of dislocations in the field of internal stresses and (ii) resonant phenomena of various nature occur, which, generally, do not require high energies, and have been realized when the oscillation frequencies of the system and the external action coincide. A sharp increase in the amplitude of oscillations leads to detachment of dislocations and destruction of impurity complexes with subsequent movement and diffusion under action of a mosaic of internal mechanical stresses in the crystal. The principal physical identity of the influence of a weak magnetic field and nonthermal action of microwave radiation on a semiconductor material has been shown.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Physics Quantum Electronics & Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo22.01.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Possible mechanisms of transformation of defects in semiconductor structures under action of electromagnetic radiation in the microwave range and pulsed magnetic field have been analyzed. Electrical-resonance effects under nonthermal action of electromagnetic fields have been considered, namely: resonant detachment of dislocations and destruction of impurity complexes in semiconductor crystals, electrical-resonance transformation of defects in semiconductor crystals under action of weak pulsed magnetic fields; magnetic-resonance effects on defects in semiconductor crystals under action of weak magnetic and electromagnetic fields. It has been shown that alternative interaction mechanisms should be used to explain a large number of reliably established magnetically induced effects and phenomena associated with the nonthermal effects of microwave fields. There are two the most probable mechanisms: (i) spin-dependent reactions of paramagnetic defects in semiconductor crystals, as a result of which detachment and subsequent movement of dislocations in the field of internal stresses and (ii) resonant phenomena of various nature occur, which, generally, do not require high energies, and have been realized when the oscillation frequencies of the system and the external action coincide. A sharp increase in the amplitude of oscillations leads to detachment of dislocations and destruction of impurity complexes with subsequent movement and diffusion under action of a mosaic of internal mechanical stresses in the crystal. The principal physical identity of the influence of a weak magnetic field and nonthermal action of microwave radiation on a semiconductor material has been shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引起谐振现象的电磁场和磁场作用下半导体结构缺陷的转变
分析了在微波范围内的电磁辐射和脉冲磁场的作用下,半导体结构中缺陷转变的可能机制。考虑了电磁场非热作用下的电共振效应,即:半导体晶体中位错的共振分离和杂质配合物的破坏,弱脉冲磁场作用下半导体晶体中缺陷的电共振转化;弱磁场和电磁场作用下半导体晶体缺陷的磁共振效应。已经表明,应该使用替代的相互作用机制来解释大量可靠建立的磁感应效应和与微波场的非热效应相关的现象。有两种最可能的机制:(i)半导体晶体中顺磁缺陷的自旋依赖性反应,其结果是位错在内应力场中的分离和随后的运动;(ii)发生各种性质的共振现象,通常不需要高能量,并且已经在系统的振荡频率和外部作用一致时实现。振荡幅度的急剧增加导致位错的分离和杂质配合物的破坏,随后在晶体中的内部机械应力镶嵌的作用下发生移动和扩散。弱磁场和微波辐射的非热作用对半导体材料影响的主要物理特性已经得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
22.20%
发文量
43
审稿时长
15 weeks
期刊最新文献
SPR chromatic sensor with colorimetric registration for detection of gas molecules Determination of scattering and Urbach absorption contributions to the light extinction in PTFE films by using graphical representation technique and numerical solution of the inverse problem Relationship between oxidation, stresses, morphology, local resistivity, and optical properties of TiO2, Gd2O3, Er2O3, SiO2 thin films on SiC Preparation and ionic conductivity of Ag8GeS6-based ceramic materials Comment on “Short-time dynamics of noise-induced escapes and transitions in overdamped systems” by Soskin et al., Semiconductor Physics, Quantum Electronics & Optoelectronics, 2022. 25, No 3. P. 262–274
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1