{"title":"Prediction of multi-sectoral longitudinal water withdrawals using hierarchical machine learning models","authors":"J. Shortridge","doi":"10.2166/hydro.2023.110","DOIUrl":null,"url":null,"abstract":"\n Accurate models of water withdrawal are crucial in anticipating the potential water use impacts of drought and climate change. Machine learning methods can simulate the complex, nonlinear relationship between water use and potential explanatory factors, but rarely incorporate the hierarchical nature of water use data. This work presents a novel approach for the prediction of water withdrawals across multiple usage sectors using an ensemble of models fit at different hierarchical levels. Models were fit at the facility and sectoral grouping levels, as well as across facility clusters defined by temporal water use characteristics. Using repeated holdout cross-validation and a dataset of over 300,000 observations of monthly water withdrawal across 1,509 facilities, it demonstrates that ensemble predictions led to statistically significant improvements in predictive performance in five of the eight sectors analyzed. The use of ensemble modeling resulted in lower predictive errors compared to facility models in 65% of facilities analyzed. The relative improvement gained by ensemble modeling was greatest for facilities with fewer observations and higher variance, indicating its potential value in predicting withdrawal for facilities with relatively short data records or data quality issues.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate models of water withdrawal are crucial in anticipating the potential water use impacts of drought and climate change. Machine learning methods can simulate the complex, nonlinear relationship between water use and potential explanatory factors, but rarely incorporate the hierarchical nature of water use data. This work presents a novel approach for the prediction of water withdrawals across multiple usage sectors using an ensemble of models fit at different hierarchical levels. Models were fit at the facility and sectoral grouping levels, as well as across facility clusters defined by temporal water use characteristics. Using repeated holdout cross-validation and a dataset of over 300,000 observations of monthly water withdrawal across 1,509 facilities, it demonstrates that ensemble predictions led to statistically significant improvements in predictive performance in five of the eight sectors analyzed. The use of ensemble modeling resulted in lower predictive errors compared to facility models in 65% of facilities analyzed. The relative improvement gained by ensemble modeling was greatest for facilities with fewer observations and higher variance, indicating its potential value in predicting withdrawal for facilities with relatively short data records or data quality issues.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.