{"title":"Minimax Estimation of the Mean Matrix of the Matrix Variate Normal Distribution under the Divergence Loss Function","authors":"S. Zinodiny, Sadegh Rezaei, S. Nadarajah","doi":"10.6092/ISSN.1973-2201/6956","DOIUrl":null,"url":null,"abstract":"The problem of estimating the mean matrix of a matrix-variate normal distribution with a covariance matrix is considered under two loss functions. We construct a class of empirical Bayes estimators which are better than the maximum likelihood estimator under the first loss function and hence show that the maximum likelihood estimator is inadmissible. We find a general class of minimax estimators. Also we give a class of estimators that improve on the maximum likelihood estimator under the second loss function and hence show that the maximum likelihood estimator is inadmissible.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/6956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
The problem of estimating the mean matrix of a matrix-variate normal distribution with a covariance matrix is considered under two loss functions. We construct a class of empirical Bayes estimators which are better than the maximum likelihood estimator under the first loss function and hence show that the maximum likelihood estimator is inadmissible. We find a general class of minimax estimators. Also we give a class of estimators that improve on the maximum likelihood estimator under the second loss function and hence show that the maximum likelihood estimator is inadmissible.