A shock-capturing meshless method for solving the one-dimensional Saint-Venant equations on a highly variable topography

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-06-19 DOI:10.2166/hydro.2023.164
D. Satyaprasad, S. N. Kuiry, S. Sundar
{"title":"A shock-capturing meshless method for solving the one-dimensional Saint-Venant equations on a highly variable topography","authors":"D. Satyaprasad, S. N. Kuiry, S. Sundar","doi":"10.2166/hydro.2023.164","DOIUrl":null,"url":null,"abstract":"\n The Saint-Venant equations are numerically solved to simulate free surface flows in one dimension. A Riemann solver is needed to compute the numerical flux for capturing shocks and flow discontinuities occurring in flow situations such as hydraulic jump, dam-break wave propagation, or bore wave propagation. A Riemann solver that captures shocks and flow discontinuities is not yet reported to be implemented within the framework of a meshless method for solving the Saint-Venant equations. Therefore, a wide range of free surface flow problems cannot be simulated by the available meshless methods. In this study, a shock-capturing meshless method is proposed for simulating one-dimensional (1D) flows on a highly variable topography. The Harten–Lax–van Leer Riemann solver is used for computing the convective flux in the proposed meshless method. Spatial derivatives in the Saint-Venant equations and the reconstruction of conservative variables for flux terms are computed using a weighted least square approximation. The proposed method is tested for various numerically challenging problems and laboratory experiments on different flow regimes. The proposed highly accurate shock-capturing meshless method has the potential to be extended to solve the two-dimensional (2D) shallow water equations without any mesh requirements.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.164","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Saint-Venant equations are numerically solved to simulate free surface flows in one dimension. A Riemann solver is needed to compute the numerical flux for capturing shocks and flow discontinuities occurring in flow situations such as hydraulic jump, dam-break wave propagation, or bore wave propagation. A Riemann solver that captures shocks and flow discontinuities is not yet reported to be implemented within the framework of a meshless method for solving the Saint-Venant equations. Therefore, a wide range of free surface flow problems cannot be simulated by the available meshless methods. In this study, a shock-capturing meshless method is proposed for simulating one-dimensional (1D) flows on a highly variable topography. The Harten–Lax–van Leer Riemann solver is used for computing the convective flux in the proposed meshless method. Spatial derivatives in the Saint-Venant equations and the reconstruction of conservative variables for flux terms are computed using a weighted least square approximation. The proposed method is tested for various numerically challenging problems and laboratory experiments on different flow regimes. The proposed highly accurate shock-capturing meshless method has the potential to be extended to solve the two-dimensional (2D) shallow water equations without any mesh requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解高度可变地形上一维Saint-Venant方程的无网格激波捕获方法
对Saint-Venant方程进行了数值求解,以模拟一维自由表面流动。需要一个黎曼解算器来计算数值通量,以捕捉在水流情况下发生的冲击和流动不连续性,如水跃、溃坝波传播或涌浪传播。据报道,捕捉冲击和流动不连续性的黎曼解算器尚未在求解Saint-Venant方程的无网格方法的框架内实现。因此,现有的无网格方法无法模拟广泛的自由表面流动问题。在这项研究中,提出了一种无网格冲击捕捉方法来模拟高度可变地形上的一维(1D)流动。在所提出的无网格方法中,Harten–Lax–van Leer-Riemann求解器用于计算对流通量。使用加权最小二乘近似计算Saint-Venant方程中的空间导数和通量项的保守变量的重建。针对各种具有数值挑战性的问题和不同流态的实验室实验,对所提出的方法进行了测试。所提出的高精度冲击捕获无网格方法有可能扩展到求解二维浅水方程,而不需要任何网格要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1