Rotary gate discharge determination for inclusive data from free to submerged flow conditions using ENN, ENN–GA, and SVM–SA

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-06-24 DOI:10.2166/hydro.2023.202
A. Marashi, S. Kouchakzadeh, H. Yonesi
{"title":"Rotary gate discharge determination for inclusive data from free to submerged flow conditions using ENN, ENN–GA, and SVM–SA","authors":"A. Marashi, S. Kouchakzadeh, H. Yonesi","doi":"10.2166/hydro.2023.202","DOIUrl":null,"url":null,"abstract":"\n \n This study aims at evaluating the performance of the Elman Neural Network (ENN), Elman Neural Network-Genetic Algorithm (ENN–GA), and Support Vector Machine-simulated annealing (SVM–SA) in determining the discharge of a newly proposed rotary gate for the inclusive data range from free flow to highly submerged conditions. For individual free and submerged flows, the models performed as well as that of the traditional relationships. However, the superiority of the intelligent models comes when dealing with the inclusive data set of both flow conditions, where no deterministic approach is available for discharge evaluation prior to specifying the threshold condition. In such complex flow conditions, the ENN–GA hybrid model with a proper structure determined the discharge with rather a high accuracy, i.e., SE of 6.12%. Also, in defining the threshold state, the ENN and ENN–GA models achieved superior results compared to the currently available relationship, i.e., it accurately recognized the threshold condition in almost 100% of the cases while the traditional relationship results were limited to 93% of the cases. Such accuracy of the employed model in assessing the discharge of the structure and its high ability in recognizing the flow state could be of great advantage for irrigation network structure automation.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.202","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims at evaluating the performance of the Elman Neural Network (ENN), Elman Neural Network-Genetic Algorithm (ENN–GA), and Support Vector Machine-simulated annealing (SVM–SA) in determining the discharge of a newly proposed rotary gate for the inclusive data range from free flow to highly submerged conditions. For individual free and submerged flows, the models performed as well as that of the traditional relationships. However, the superiority of the intelligent models comes when dealing with the inclusive data set of both flow conditions, where no deterministic approach is available for discharge evaluation prior to specifying the threshold condition. In such complex flow conditions, the ENN–GA hybrid model with a proper structure determined the discharge with rather a high accuracy, i.e., SE of 6.12%. Also, in defining the threshold state, the ENN and ENN–GA models achieved superior results compared to the currently available relationship, i.e., it accurately recognized the threshold condition in almost 100% of the cases while the traditional relationship results were limited to 93% of the cases. Such accuracy of the employed model in assessing the discharge of the structure and its high ability in recognizing the flow state could be of great advantage for irrigation network structure automation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用ENN、ENN - ga和SVM-SA测定从自由流到淹没流条件的包括数据的旋转门流量
本研究旨在评估Elman神经网络(ENN), Elman神经网络遗传算法(ENN - ga)和支持向量机模拟退火(SVM-SA)在确定新提出的旋转门的流量方面的性能,包括从自由流动到高度淹没条件的数据范围。对于单独的自由和淹没水流,模型的表现与传统关系一样好。然而,智能模型的优势在于处理包含两种流量条件的数据集,在指定阈值条件之前,没有确定性方法可用于流量评估。在如此复杂的流动条件下,结构合理的ENN-GA混合模型确定流量的准确率较高,SE为6.12%。此外,在阈值状态的定义上,ENN和ENN - ga模型取得了优于现有关系的结果,即在几乎100%的情况下准确识别阈值条件,而传统关系的结果仅限于93%的情况。所采用的模型在评估结构流量方面的准确性和对流量状态的高识别能力将为灌溉网络结构自动化提供很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1