{"title":"Experimental Study of In-medium Spectral Change of Vector Mesons at J-PARC","authors":"Kazuya Aoki, Daichi Arimizu, Sakiko Ashikaga, Wen-Chen Chang, Tatsuya Chujo, Kengo Ebata, Hideto En’yo, Shinichi Esumi, Hideki Hamagaki, Ryotaro Honda, Masaya Ichikawa, Shunsuke Kajikawa, Koki Kanno, Yuta Kimura, Akio Kiyomichi, Takehito K. Kondo, Shono Kyan, Che-Sheng Lin, Chih-Hsun Lin, Yuhei Morino, Hikari Murakami, Tomoki N. Murakami, Ryotaro Muto, Shunnosuke Nagafusa, Wataru Nakai, Satomi Nakasuga, Megumi Naruki, Toshihiro Nonaka, Hiroyuki Noumi, Shuta Ochiai, Kyoichiro Ozawa, Takao Sakaguchi, Hiroyuki Sako, Fuminori Sakuma, Susumu Sato, Shinya Sawada, Michiko Sekimoto, Kenta Shigaki, Kotaro Shirotori, Hitoshi Sugimura, Tomonori N. Takahashi, Yudai Takaura, Ryohei Tatsumi, Kosuke Tsukui, Po-Hung Wang, Kanta Yahiro, Kanako H. Yamaguchi, Satoshi Yokkaichi","doi":"10.1007/s00601-023-01828-7","DOIUrl":null,"url":null,"abstract":"<div><p>Chiral symmetry and its spontaneous breaking is an essential property of the QCD vacuum and is closely related to the generation of hadron mass. J-PARC E16 experiment measures dielectron spectra in p+A collisions at 30 GeV to study the in-medium spectral change of vector mesons that signals the partial restoration of the broken symmetry. The experiment uses the primary proton beam available at the high-momentum beam line of the J-PARC hadron experimental facility. We performed three proton-beam runs intended for beamline and detector commissioning. We are preparing for the next commissioning run in 2023 and the first physics run. We present the experimental setup, some of the expected results, preparation status, and some findings in the commissioning runs.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"64 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-023-01828-7.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-023-01828-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Chiral symmetry and its spontaneous breaking is an essential property of the QCD vacuum and is closely related to the generation of hadron mass. J-PARC E16 experiment measures dielectron spectra in p+A collisions at 30 GeV to study the in-medium spectral change of vector mesons that signals the partial restoration of the broken symmetry. The experiment uses the primary proton beam available at the high-momentum beam line of the J-PARC hadron experimental facility. We performed three proton-beam runs intended for beamline and detector commissioning. We are preparing for the next commissioning run in 2023 and the first physics run. We present the experimental setup, some of the expected results, preparation status, and some findings in the commissioning runs.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).