Amirhossein Fattahi , Jos Sijm , Machteld Van den Broek , Rafael Martínez Gordón , Manuel Sanchez Dieguez , André Faaij
{"title":"Analyzing the techno-economic role of nuclear power in the Dutch net-zero energy system transition","authors":"Amirhossein Fattahi , Jos Sijm , Machteld Van den Broek , Rafael Martínez Gordón , Manuel Sanchez Dieguez , André Faaij","doi":"10.1016/j.adapen.2022.100103","DOIUrl":null,"url":null,"abstract":"<div><p>To analyze the role of nuclear power in an integrated energy system, we used the IESA-Opt-N cost minimization model focusing on four key themes: system-wide impacts of nuclear power, uncertain technological costs, flexible generation, and cross-border electricity trade. We demonstrate that the LCOE (levelized cost of electricity) alone should not be used to demonstrate the economic feasibility of a power generation technology. For instance, under the default techno-economic assumptions, particularly the 5% discount rate and exogenous electricity trade potentials, it is cost-optimal for the Netherlands to invest in 9.6 GWe nuclear capacity by 2050. However, its LCOE is 34 €/MWh higher than offshore wind. Moreover, we found that nuclear power investments can reduce demand for variable renewable energy sources in the short term and higher energy independence (i.e., lower imports of natural gas, biomass, and electricity) in the long term. Furthermore, investing in nuclear power can reduce the mitigation costs of the Dutch energy system by 1.6% and 6.2% in 2040 and 2050, and 25% lower national CO<sub>2</sub> prices by 2050. However, this cost reduction is not significant given the odds of higher nuclear financing costs and longer construction times. In addition, with 3% interest rate value (e.g., EU taxonomy support), even high cost nuclear (10 B€/GW) can be cost-effective in the Netherlands. In conclusion, under the specific assumptions of this study, nuclear power can play a complementary role (in parallel to the wind and solar power) in supporting the Dutch energy transition from the sole techno-economic point of view.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"7 ","pages":"Article 100103"},"PeriodicalIF":13.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266679242200021X/pdfft?md5=c42664685c80e83adba5029ca0a72b4a&pid=1-s2.0-S266679242200021X-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266679242200021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
To analyze the role of nuclear power in an integrated energy system, we used the IESA-Opt-N cost minimization model focusing on four key themes: system-wide impacts of nuclear power, uncertain technological costs, flexible generation, and cross-border electricity trade. We demonstrate that the LCOE (levelized cost of electricity) alone should not be used to demonstrate the economic feasibility of a power generation technology. For instance, under the default techno-economic assumptions, particularly the 5% discount rate and exogenous electricity trade potentials, it is cost-optimal for the Netherlands to invest in 9.6 GWe nuclear capacity by 2050. However, its LCOE is 34 €/MWh higher than offshore wind. Moreover, we found that nuclear power investments can reduce demand for variable renewable energy sources in the short term and higher energy independence (i.e., lower imports of natural gas, biomass, and electricity) in the long term. Furthermore, investing in nuclear power can reduce the mitigation costs of the Dutch energy system by 1.6% and 6.2% in 2040 and 2050, and 25% lower national CO2 prices by 2050. However, this cost reduction is not significant given the odds of higher nuclear financing costs and longer construction times. In addition, with 3% interest rate value (e.g., EU taxonomy support), even high cost nuclear (10 B€/GW) can be cost-effective in the Netherlands. In conclusion, under the specific assumptions of this study, nuclear power can play a complementary role (in parallel to the wind and solar power) in supporting the Dutch energy transition from the sole techno-economic point of view.