Conformable packaging of a soft pressure sensor for tactile perception

IF 2.8 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Flexible and Printed Electronics Pub Date : 2023-08-03 DOI:10.1088/2058-8585/aced15
Subham Das, M. Bhattacharjee, K. Thiyagarajan, S. Kodagoda
{"title":"Conformable packaging of a soft pressure sensor for tactile perception","authors":"Subham Das, M. Bhattacharjee, K. Thiyagarajan, S. Kodagoda","doi":"10.1088/2058-8585/aced15","DOIUrl":null,"url":null,"abstract":"Humans can perceive surface properties of an unfamiliar object without relying solely on vision. One way to achieve it is by physically touching the object. This human-inspired tactile perception is a complementary skill for robotic tactile perception. Robot perception depends on the informational quality of the tactile sensor; thus, packaging sensors and integrating them with robots plays a crucial role. In this work, we investigate the influence of conformable packaging designs on soft polydimethylsiloxane-based flexible pressure sensors that work in a variety of surface conditions and load levels. Four different 3D printed packaging designs capable of maintaining sensor trends have been developed. The low detection limits of 0.7 kPa and 0.1 kPa in the piezoresistive and piezocapacitive sensors, respectively, remain unaffected, and a performance variation as low as 30% is observed. Coefficient of variation and sensitivity studies have also been performed. Limit tests show that the designs can handle large forces ranging from 500 N to more than a 1000 N. Lastly, a qualitative study was performed, which covered prospective use-case scenarios as well as the advantages and downsides of each sensor casing design. Overall, the findings indicate that each sensor casing is distinct and best suited for tactile perception when interacting with objects, depending on surface properties.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/aced15","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Humans can perceive surface properties of an unfamiliar object without relying solely on vision. One way to achieve it is by physically touching the object. This human-inspired tactile perception is a complementary skill for robotic tactile perception. Robot perception depends on the informational quality of the tactile sensor; thus, packaging sensors and integrating them with robots plays a crucial role. In this work, we investigate the influence of conformable packaging designs on soft polydimethylsiloxane-based flexible pressure sensors that work in a variety of surface conditions and load levels. Four different 3D printed packaging designs capable of maintaining sensor trends have been developed. The low detection limits of 0.7 kPa and 0.1 kPa in the piezoresistive and piezocapacitive sensors, respectively, remain unaffected, and a performance variation as low as 30% is observed. Coefficient of variation and sensitivity studies have also been performed. Limit tests show that the designs can handle large forces ranging from 500 N to more than a 1000 N. Lastly, a qualitative study was performed, which covered prospective use-case scenarios as well as the advantages and downsides of each sensor casing design. Overall, the findings indicate that each sensor casing is distinct and best suited for tactile perception when interacting with objects, depending on surface properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软性压力传感器的舒适包装,用于触觉感知
人类可以在不依赖视觉的情况下感知陌生物体的表面特性。实现这一点的一种方法是用身体触摸物体。这种受人类启发的触觉感知是机器人触觉感知的补充技能。机器人的感知取决于触觉传感器的信息质量;因此,封装传感器并将其与机器人集成起着至关重要的作用。在这项工作中,我们研究了适形封装设计对在各种表面条件和负载水平下工作的基于软聚二甲基硅氧烷的柔性压力传感器的影响。已经开发了能够保持传感器趋势的四种不同的3D打印包装设计。压阻式和压容式传感器中分别为0.7kPa和0.1kPa的低检测极限不受影响,并且观察到低至30%的性能变化。还进行了变异系数和敏感性研究。极限测试表明,这些设计可以承受从500 N到1000 N以上的大作用力。最后,进行了一项定性研究,涵盖了预期的用例场景以及每个传感器外壳设计的优缺点。总体而言,研究结果表明,根据表面特性,每个传感器外壳都是不同的,最适合与物体交互时的触觉感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Flexible and Printed Electronics
Flexible and Printed Electronics MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
9.70%
发文量
101
期刊介绍: Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.
期刊最新文献
Flexible intracortical probes for stable neural recording: from the perspective of structure Dry printing fully functional eco-friendly and disposable transient papertronics End-of-life options for printed electronics in municipal solid waste streams: a review of the challenges, opportunities, and sustainability implications Transparent and flexible fish-tail shaped antenna for ultra-wideband MIMO systems Recent advances in encapsulation strategies for flexible transient electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1