Deep learning model on rates of change for multi-step ahead streamflow forecasting

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-08-07 DOI:10.2166/hydro.2023.001
Woon Yang Tan, S. Lai, K. Pavitra, F. Teo, A. El-shafie
{"title":"Deep learning model on rates of change for multi-step ahead streamflow forecasting","authors":"Woon Yang Tan, S. Lai, K. Pavitra, F. Teo, A. El-shafie","doi":"10.2166/hydro.2023.001","DOIUrl":null,"url":null,"abstract":"\n \n Water security and urban flooding have become major sustainability issues. This paper presents a novel method to introduce rates of change as the state-of-the-art approach in artificial intelligence model development for sustainability agenda. Multi-layer perceptron (MLP) and deep learning long short-term memory (LSTM) models were considered for flood forecasting. Historical rainfall data from 2008 to 2021 at 11 telemetry stations were obtained to predict flow at the confluence between Klang River and Ampang River. The initial results of MLP yielded poor performance beneath normal expectations, which was R = 0.4465, MAE = 3.7135, NSE = 0.1994 and RMSE = 8.8556. Meanwhile, the LSTM model generated a 45% improvement in its R-value up to 0.9055. Detailed investigations found that the redundancy of data input that yielded multiple target values had distorted the model performance. Qt was introduced into input parameters to solve this issue, while Qt+0.5 was the target value. A significant improvement in the results was detected with R = 0.9359, MAE = 0.7722, NSE = 0.8756 and RMSE = 3.4911. When the rates of change were employed, an impressive improvement was seen for the plot of actual vs. forecasted flow. Findings showed that the rates of change could reduce forecast errors and were helpful as an additional layer of early flood detection.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Water security and urban flooding have become major sustainability issues. This paper presents a novel method to introduce rates of change as the state-of-the-art approach in artificial intelligence model development for sustainability agenda. Multi-layer perceptron (MLP) and deep learning long short-term memory (LSTM) models were considered for flood forecasting. Historical rainfall data from 2008 to 2021 at 11 telemetry stations were obtained to predict flow at the confluence between Klang River and Ampang River. The initial results of MLP yielded poor performance beneath normal expectations, which was R = 0.4465, MAE = 3.7135, NSE = 0.1994 and RMSE = 8.8556. Meanwhile, the LSTM model generated a 45% improvement in its R-value up to 0.9055. Detailed investigations found that the redundancy of data input that yielded multiple target values had distorted the model performance. Qt was introduced into input parameters to solve this issue, while Qt+0.5 was the target value. A significant improvement in the results was detected with R = 0.9359, MAE = 0.7722, NSE = 0.8756 and RMSE = 3.4911. When the rates of change were employed, an impressive improvement was seen for the plot of actual vs. forecasted flow. Findings showed that the rates of change could reduce forecast errors and were helpful as an additional layer of early flood detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多步超前流量预测变化率的深度学习模型
水安全和城市洪水已成为主要的可持续性问题。本文提出了一种新的方法,将变化率作为可持续发展议程中人工智能模型开发的最先进方法。采用多层感知器(MLP)和深度学习长短期记忆(LSTM)模型进行洪水预报。利用11个遥测站2008年至2021年的历史雨量资料,预测巴生河与安邦河汇合处的流量。MLP的初始结果表现不佳,低于正常预期,R = 0.4465, MAE = 3.7135, NSE = 0.1994, RMSE = 8.8556。同时,LSTM模型的r值提高了45%,达到0.9055。详细的调查发现,产生多个目标值的数据输入冗余已经扭曲了模型的性能。为了解决这一问题,在输入参数中引入了Qt,以Qt+0.5为目标值。结果有显著改善,R = 0.9359, MAE = 0.7722, NSE = 0.8756, RMSE = 3.4911。当采用变化率时,在实际流量与预测流量的图中可以看到令人印象深刻的改进。结果表明,变化率可以减少预测误差,并有助于作为早期洪水探测的额外层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1