ESTIMATION OF A HIGH-DIMENSIONAL COUNTING PROCESS WITHOUT PENALTY FOR HIGH-FREQUENCY EVENTS

IF 1 4区 经济学 Q3 ECONOMICS Econometric Theory Pub Date : 2022-06-14 DOI:10.1017/S0266466622000238
Luca Mucciante, Alessio Sancetta
{"title":"ESTIMATION OF A HIGH-DIMENSIONAL COUNTING PROCESS WITHOUT PENALTY FOR HIGH-FREQUENCY EVENTS","authors":"Luca Mucciante, Alessio Sancetta","doi":"10.1017/S0266466622000238","DOIUrl":null,"url":null,"abstract":"This paper introduces a counting process for event arrivals in high-frequency trading, based on high-dimensional covariates. The novelty is that, under sparsity conditions on the true model, we do not need to impose any model penalty or parameters shrinkage, unlike Lasso. The procedure allows us to derive a central limit theorem to test restrictions in a two-stage estimator. We achieve this by the use of a sign constraint on the intensity which necessarily needs to be positive. In particular, we introduce an additive model to extract the nonlinear impact of order book variables on buy and sell trade arrivals. In the empirical application, we show that the shape and dynamics of the order book are fundamental in determining the arrival of buy and sell trades in the crude oil futures market. We establish our empirical results mapping the covariates into a higher-dimensional space. Consistently with the theoretical results, the estimated models are sparse in the number of parameters. Using this approach, we are also able to compare competing model hypotheses on the basis of an out-of-sample likelihood ratio type of test.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"39 1","pages":"989 - 1008"},"PeriodicalIF":1.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/S0266466622000238","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces a counting process for event arrivals in high-frequency trading, based on high-dimensional covariates. The novelty is that, under sparsity conditions on the true model, we do not need to impose any model penalty or parameters shrinkage, unlike Lasso. The procedure allows us to derive a central limit theorem to test restrictions in a two-stage estimator. We achieve this by the use of a sign constraint on the intensity which necessarily needs to be positive. In particular, we introduce an additive model to extract the nonlinear impact of order book variables on buy and sell trade arrivals. In the empirical application, we show that the shape and dynamics of the order book are fundamental in determining the arrival of buy and sell trades in the crude oil futures market. We establish our empirical results mapping the covariates into a higher-dimensional space. Consistently with the theoretical results, the estimated models are sparse in the number of parameters. Using this approach, we are also able to compare competing model hypotheses on the basis of an out-of-sample likelihood ratio type of test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对高维计数过程的估计,对高频事件没有惩罚
本文介绍了一种基于高维协变量的高频交易事件到达计数过程。新颖之处在于,在真实模型的稀疏性条件下,我们不需要施加任何模型惩罚或参数收缩,这与Lasso不同。该过程允许我们导出一个中心极限定理来检验两阶段估计量中的限制。我们通过使用强度的符号约束来实现这一点,强度必须是正的。特别地,我们引入了一个加性模型来提取订单变量对买卖交易到达的非线性影响。在实证应用中,我们表明订单簿的形状和动态是决定原油期货市场买卖交易到来的基本因素。我们建立了将协变量映射到高维空间的经验结果。与理论结果一致,估计模型在参数数量上是稀疏的。使用这种方法,我们还能够在样本外似然比类型检验的基础上比较相互竞争的模型假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
期刊最新文献
INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS UNDER UNCONDITIONAL HETEROSKEDASTICITY EFFICIENCY IN ESTIMATION UNDER MONOTONIC ATTRITION WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS APPLICATIONS OF FUNCTIONAL DEPENDENCE TO SPATIAL ECONOMETRICS IDENTIFICATION AND STATISTICAL DECISION THEORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1