Relevance meets calibration: Triple calibration distance design for neighbour-based recommender systems

IF 1.8 4区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information Science Pub Date : 2023-07-07 DOI:10.1177/01655515231182069
Zhuang Chen, Haitao Zou, Hualong Yu, Shang Zheng, Shang Gao
{"title":"Relevance meets calibration: Triple calibration distance design for neighbour-based recommender systems","authors":"Zhuang Chen, Haitao Zou, Hualong Yu, Shang Zheng, Shang Gao","doi":"10.1177/01655515231182069","DOIUrl":null,"url":null,"abstract":"Calibrated recommendations are devoted to revealing the various preferences of users with the appropriate proportions in the recommendation list. Most of the existing calibrated-oriented recommendations take an extra postprocessing step to rerank the initial outputs. However, applying this postprocessing strategy may decrease the recommendation relevance, since the origin accurate outputs have been scattered, and they usually ignore the calibration between pairwise users/items. Instead of reranking the recommendation outputs, this article is dedicated to modifying the criterion of neighbour users’ selection, where we look forward to strengthening the recommendation relevance by calibrating the neighbourhood. We propose the first-order, second-order and the third-order calibration distance based on the motivation that if a user has a similar genre distribution or genre rating schema towards the target user, then his or her suggestions will be more useful for rating prediction. We also provide an equivalent transformation for the original method to speed up the algorithm with solid theoretical proof. Experimental analysis on two publicly available data sets empirically shows that our approaches are better than some of the state-of-the-art methods in terms of recommendation relevance, calibration and efficiency.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515231182069","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Calibrated recommendations are devoted to revealing the various preferences of users with the appropriate proportions in the recommendation list. Most of the existing calibrated-oriented recommendations take an extra postprocessing step to rerank the initial outputs. However, applying this postprocessing strategy may decrease the recommendation relevance, since the origin accurate outputs have been scattered, and they usually ignore the calibration between pairwise users/items. Instead of reranking the recommendation outputs, this article is dedicated to modifying the criterion of neighbour users’ selection, where we look forward to strengthening the recommendation relevance by calibrating the neighbourhood. We propose the first-order, second-order and the third-order calibration distance based on the motivation that if a user has a similar genre distribution or genre rating schema towards the target user, then his or her suggestions will be more useful for rating prediction. We also provide an equivalent transformation for the original method to speed up the algorithm with solid theoretical proof. Experimental analysis on two publicly available data sets empirically shows that our approaches are better than some of the state-of-the-art methods in terms of recommendation relevance, calibration and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相关性与校准:基于邻居的推荐系统的三重校准距离设计
校准推荐致力于在推荐列表中以适当的比例揭示用户的各种偏好。大多数现有的面向校准的建议都需要额外的后处理步骤来重新排列初始输出。然而,应用这种后处理策略可能会降低推荐相关性,因为原始准确输出是分散的,并且它们通常忽略了成对用户/项目之间的校准。本文致力于修改邻居用户选择的标准,而不是对推荐输出进行重新排序,我们期待通过校准邻居来增强推荐相关性。基于用户与目标用户具有相似的体裁分布或体裁评分模式的动机,我们提出了一阶、二阶和三阶校准距离,那么他或她的建议对评分预测更有用。我们还对原方法进行了等价变换,以提高算法的速度,并提供了坚实的理论证明。对两个公开数据集的实验分析表明,我们的方法在推荐相关性、校准和效率方面优于一些最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Science
Journal of Information Science 工程技术-计算机:信息系统
CiteScore
6.80
自引率
8.30%
发文量
121
审稿时长
4 months
期刊介绍: The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.
期刊最新文献
Government chatbot: Empowering smart conversations with enhanced contextual understanding and reasoning Knowing within multispecies families: An information experience study How are global university rankings adjusted for erroneous science, fraud and misconduct? Posterior reduction or adjustment in rankings in response to retractions and invalidation of scientific findings Predicting the technological impact of papers: Exploring optimal models and most important features Cross-domain corpus selection for cold-start context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1