{"title":"The Control of Civil Engineering Projects Based on Deep Learning and Building Information Modeling","authors":"Fang Wang, Liangqiong Chen","doi":"10.4018/irmj.329250","DOIUrl":null,"url":null,"abstract":"The aim of this study is to enhance the quality of civil engineering project management and optimize project control in order to ensure adequate construction resources and facilitate seamless project progression. By integrating building information modeling (BIM) technology with deep learning techniques, optimal control was examined at various stages of civil engineering project management. A simulation test was performed on a selected gymnasium engineering project, focusing on cost and resource control aspects. The findings revealed that, as the project advanced, the planned cost exceeded the actual cost by nearly 100,000 yuan in the final stage. The combination of BIM technology and deep learning model prediction substantially reduced the cost and material budgets of the engineering project. Data analysis showed that the average positioning error of the convolutional neural network algorithm for the project model was below 2%.","PeriodicalId":44735,"journal":{"name":"Information Resources Management Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Resources Management Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/irmj.329250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to enhance the quality of civil engineering project management and optimize project control in order to ensure adequate construction resources and facilitate seamless project progression. By integrating building information modeling (BIM) technology with deep learning techniques, optimal control was examined at various stages of civil engineering project management. A simulation test was performed on a selected gymnasium engineering project, focusing on cost and resource control aspects. The findings revealed that, as the project advanced, the planned cost exceeded the actual cost by nearly 100,000 yuan in the final stage. The combination of BIM technology and deep learning model prediction substantially reduced the cost and material budgets of the engineering project. Data analysis showed that the average positioning error of the convolutional neural network algorithm for the project model was below 2%.
期刊介绍:
Topics should be drawn from, but not limited to, the following areas, with major emphasis on the managerial and organizational aspects of information resource and technology management: •Application of IT to operation •Artificial intelligence and expert systems technologies and issues •Business process management and modeling •Data warehousing and mining •Database management technologies and issues •Decision support and group decision support systems •Distance learning technologies and issues •Distributed software development •E-collaboration •Electronic commerce technologies and issues •Electronic government •Emerging technologies management