{"title":"On the singularly perturbation fractional Kirchhoff equations: Critical case","authors":"Guangze Gu, Zhipeng Yang","doi":"10.1515/anona-2022-0234","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with the following fractional Kirchhoff problem with critical exponent a + b ∫ R N ∣ ( − Δ ) s 2 u ∣ 2 d x ( − Δ ) s u = ( 1 + ε K ( x ) ) u 2 s ∗ − 1 , in R N , \\left(a+b\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}| {\\left(-\\Delta )}^{\\tfrac{s}{2}}u\\hspace{-0.25em}{| }^{2}{\\rm{d}}x\\right){\\left(-\\Delta )}^{s}u=\\left(1+\\varepsilon K\\left(x)){u}^{{2}_{s}^{\\ast }-1},\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}, where a , b > 0 a,b\\gt 0 are given constants, ε \\varepsilon is a small parameter, 2 s ∗ = 2 N N − 2 s {2}_{s}^{\\ast }=\\frac{2N}{N-2s} with 0 < s < 1 0\\lt s\\lt 1 and N ≥ 4 s N\\ge 4s . We first prove the nondegeneracy of positive solutions when ε = 0 \\varepsilon =0 . In particular, we prove that uniqueness breaks down for dimensions N > 4 s N\\gt 4s , i.e., we show that there exist two nondegenerate positive solutions which seem to be completely different from the result of the fractional Schrödinger equation or the low-dimensional fractional Kirchhoff equation. Using the finite-dimensional reduction method and perturbed arguments, we also obtain the existence of positive solutions to the singular perturbation problems for ε \\varepsilon small.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1097 - 1116"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0234","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14
Abstract
Abstract This article deals with the following fractional Kirchhoff problem with critical exponent a + b ∫ R N ∣ ( − Δ ) s 2 u ∣ 2 d x ( − Δ ) s u = ( 1 + ε K ( x ) ) u 2 s ∗ − 1 , in R N , \left(a+b\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}| {\left(-\Delta )}^{\tfrac{s}{2}}u\hspace{-0.25em}{| }^{2}{\rm{d}}x\right){\left(-\Delta )}^{s}u=\left(1+\varepsilon K\left(x)){u}^{{2}_{s}^{\ast }-1},\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}, where a , b > 0 a,b\gt 0 are given constants, ε \varepsilon is a small parameter, 2 s ∗ = 2 N N − 2 s {2}_{s}^{\ast }=\frac{2N}{N-2s} with 0 < s < 1 0\lt s\lt 1 and N ≥ 4 s N\ge 4s . We first prove the nondegeneracy of positive solutions when ε = 0 \varepsilon =0 . In particular, we prove that uniqueness breaks down for dimensions N > 4 s N\gt 4s , i.e., we show that there exist two nondegenerate positive solutions which seem to be completely different from the result of the fractional Schrödinger equation or the low-dimensional fractional Kirchhoff equation. Using the finite-dimensional reduction method and perturbed arguments, we also obtain the existence of positive solutions to the singular perturbation problems for ε \varepsilon small.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.