UV-converted heterogeneous wettability surface for the realization of printed micro-scale conductive circuits

IF 2.8 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Flexible and Printed Electronics Pub Date : 2023-09-07 DOI:10.1088/2058-8585/acf772
Ke Shui, Yuxiao Fang, Zerui Li, Zhenguo Wang, Subin Jiang, Ni Yin, Qi Chen, Feng-Qi Guo, Jianwen Zhao, Jian Lin, Chang‐Qi Ma
{"title":"UV-converted heterogeneous wettability surface for the realization of printed micro-scale conductive circuits","authors":"Ke Shui, Yuxiao Fang, Zerui Li, Zhenguo Wang, Subin Jiang, Ni Yin, Qi Chen, Feng-Qi Guo, Jianwen Zhao, Jian Lin, Chang‐Qi Ma","doi":"10.1088/2058-8585/acf772","DOIUrl":null,"url":null,"abstract":"Achieving high precision in the fabrication of electronic circuits through additive manufacturing requires breaking the resolution limit of traditional printing processes. To address this challenge, we have developed a novel approach that involves preparing a heterogeneous wetting surface using a light-sensitive NBE-acrylate resin. By creating differences in surface energy on the substrate, we can limit the spread of the ink and surpass the limitations of conventional processes, achieving a printing resolution of 5 μm. The NBE-acrylate resin can be cross-linked under white LED light illumination (with λ > 400 nm) to yield a hydrophobic surface, which can be converted to a hydrophilic surface by UV light illumination (λ = 254 nm). The photochemical reaction of the NBE-acrylate resin under different light irradiation was confirmed by Fourier transform infrared spectroscopy (FTIR) and atomic force microscope (AFM) microforce measurements. In combination with a photomask, patterned heterogeneous wettability surfaces were prepared, which can be utilized for printing precision electronic circuits. Micrometer-scale printed circuits with a low line-to-space (L/S) of 5/50 and 10/10 μm were successfully achieved by optimizing the ink formulation, which is significantly beyond the printing resolution. In the end, fully printed thin film transistor arrays based on semi-conducting carbon nanotubes were achieved, which showed higher charge carrier mobilities of 1.89–4.31 cm2 s−1 V−1 depending on the channel width, demonstrating the application of this precision printed technique.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acf772","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high precision in the fabrication of electronic circuits through additive manufacturing requires breaking the resolution limit of traditional printing processes. To address this challenge, we have developed a novel approach that involves preparing a heterogeneous wetting surface using a light-sensitive NBE-acrylate resin. By creating differences in surface energy on the substrate, we can limit the spread of the ink and surpass the limitations of conventional processes, achieving a printing resolution of 5 μm. The NBE-acrylate resin can be cross-linked under white LED light illumination (with λ > 400 nm) to yield a hydrophobic surface, which can be converted to a hydrophilic surface by UV light illumination (λ = 254 nm). The photochemical reaction of the NBE-acrylate resin under different light irradiation was confirmed by Fourier transform infrared spectroscopy (FTIR) and atomic force microscope (AFM) microforce measurements. In combination with a photomask, patterned heterogeneous wettability surfaces were prepared, which can be utilized for printing precision electronic circuits. Micrometer-scale printed circuits with a low line-to-space (L/S) of 5/50 and 10/10 μm were successfully achieved by optimizing the ink formulation, which is significantly beyond the printing resolution. In the end, fully printed thin film transistor arrays based on semi-conducting carbon nanotubes were achieved, which showed higher charge carrier mobilities of 1.89–4.31 cm2 s−1 V−1 depending on the channel width, demonstrating the application of this precision printed technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实现印刷微尺度导电电路的UV转换非均匀润湿表面
通过增材制造实现电子电路制造的高精度,需要突破传统印刷工艺的分辨率限制。为了解决这一挑战,我们开发了一种新的方法,包括使用光敏nbe丙烯酸酯树脂制备非均质润湿表面。通过在基材上产生表面能的差异,我们可以限制油墨的扩散,超越传统工艺的限制,实现5 μm的打印分辨率。nbe -丙烯酸酯树脂可以在白光LED照明(λ > 400 nm)下交联形成疏水表面,在紫外光照明(λ = 254 nm)下可转化为亲水表面。采用傅里叶变换红外光谱(FTIR)和原子力显微镜(AFM)微力测量证实了nbe -丙烯酸酯树脂在不同光照射下的光化学反应。与光掩膜相结合,制备了可用于印刷精密电子电路的图像化非均质润湿性表面。通过优化油墨配方,成功实现了5/50和10/10 μm的低线距(L/S)微米级印刷电路,大大超出了印刷分辨率。最后,实现了基于半导体碳纳米管的全印刷薄膜晶体管阵列,其载流子迁移率随沟道宽度的变化在1.89-4.31 cm2 s−1 V−1之间,证明了这种精密印刷技术的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Flexible and Printed Electronics
Flexible and Printed Electronics MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
9.70%
发文量
101
期刊介绍: Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.
期刊最新文献
Flexible intracortical probes for stable neural recording: from the perspective of structure Dry printing fully functional eco-friendly and disposable transient papertronics End-of-life options for printed electronics in municipal solid waste streams: a review of the challenges, opportunities, and sustainability implications Transparent and flexible fish-tail shaped antenna for ultra-wideband MIMO systems Recent advances in encapsulation strategies for flexible transient electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1