{"title":"Bounded solutions to systems of fractional discrete equations","authors":"J. Diblík","doi":"10.1515/anona-2022-0260","DOIUrl":null,"url":null,"abstract":"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)={F}_{n}\\left(n,x\\left(n),x\\left(n-1),\\ldots ,x\\left({n}_{0})),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where n 0 ∈ Z {n}_{0}\\in {\\mathbb{Z}} , n n is an independent variable, Δ α {\\Delta }^{\\alpha } is an α \\alpha -order fractional difference, α ∈ R \\alpha \\in {\\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\\left\\{n\\right\\}\\times {{\\mathbb{R}}}^{n-{n}_{0}+1}\\to {{\\mathbb{R}}}^{s} , s ⩾ 1 s\\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\\left\\{{n}_{0},{n}_{0}+1,\\ldots \\right\\}\\to {{\\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)=A\\left(n)x\\left(n)+\\delta \\left(n),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where A ( n ) A\\left(n) is a square matrix and δ ( n ) \\delta \\left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1614 - 1630"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0260","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)={F}_{n}\left(n,x\left(n),x\left(n-1),\ldots ,x\left({n}_{0})),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where n 0 ∈ Z {n}_{0}\in {\mathbb{Z}} , n n is an independent variable, Δ α {\Delta }^{\alpha } is an α \alpha -order fractional difference, α ∈ R \alpha \in {\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\left\{n\right\}\times {{\mathbb{R}}}^{n-{n}_{0}+1}\to {{\mathbb{R}}}^{s} , s ⩾ 1 s\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\left\{{n}_{0},{n}_{0}+1,\ldots \right\}\to {{\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)=A\left(n)x\left(n)+\delta \left(n),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where A ( n ) A\left(n) is a square matrix and δ ( n ) \delta \left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.