{"title":"Introduction to the Special Issue on Understanding the Spread of COVID-19, Part 1","authors":"Andreas Züfle, T. Anderson, Song Gao","doi":"10.1145/3568670","DOIUrl":null,"url":null,"abstract":"Infectious diseases are transmitted between human hosts when in close contact over space and time. Recently, an unprecedented amount of spatial and spatiotemporal data have been made available that can be used to improve our understanding of the spread of COVID-19 and other infectious diseases. This understanding will be paramount to prepare for future pandemics through spatial algorithms and systems to collect, capture, curate, and analyze complex, multi-scale human movement data to solve problems such as infectious diseases prediction, contact tracing, and risk assessment. In exploring and deepening the conversation around this topic, the eight articles included in the first volume of this special issue employ diverse theoretical perspectives, methodologies, and frameworks, including but not limited to infectious diseases simulation, risk prediction, response policy design, mobility analysis, and case diagnosis. Rather than focusing on a narrow set of problems, these articles provide a glimpse into the diverse possibilities of leveraging spatial and spatiotemporal data for pandemic preparedness.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1
Abstract
Infectious diseases are transmitted between human hosts when in close contact over space and time. Recently, an unprecedented amount of spatial and spatiotemporal data have been made available that can be used to improve our understanding of the spread of COVID-19 and other infectious diseases. This understanding will be paramount to prepare for future pandemics through spatial algorithms and systems to collect, capture, curate, and analyze complex, multi-scale human movement data to solve problems such as infectious diseases prediction, contact tracing, and risk assessment. In exploring and deepening the conversation around this topic, the eight articles included in the first volume of this special issue employ diverse theoretical perspectives, methodologies, and frameworks, including but not limited to infectious diseases simulation, risk prediction, response policy design, mobility analysis, and case diagnosis. Rather than focusing on a narrow set of problems, these articles provide a glimpse into the diverse possibilities of leveraging spatial and spatiotemporal data for pandemic preparedness.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.