NEW CONTROL FUNCTION APPROACHES IN THRESHOLD REGRESSION WITH ENDOGENEITY

IF 1 4区 经济学 Q3 ECONOMICS Econometric Theory Pub Date : 2023-03-16 DOI:10.1017/s0266466623000014
P. Yu, Qin Liao, P. Phillips
{"title":"NEW CONTROL FUNCTION APPROACHES IN THRESHOLD REGRESSION WITH ENDOGENEITY","authors":"P. Yu, Qin Liao, P. Phillips","doi":"10.1017/s0266466623000014","DOIUrl":null,"url":null,"abstract":"This paper studies control function (CF) approaches in endogenous threshold regression where the threshold variable is allowed to be endogenous. We first use a simple example to show that the structural threshold regression (STR) estimator of the threshold point in Kourtellos, Stengos and Tan (2016, Econometric Theory 32, 827–860) is inconsistent unless the endogeneity level of the threshold variable is low compared to the threshold effect. We correct the CF in the STR estimator to generate our first CF estimator using a method that extends the two-stage least squares procedure in Caner and Hansen (2004, Econometric Theory 20, 813–843). We develop our second CF estimator which can be treated as an extension of the classical CF approach in endogenous linear regression. Both these approaches embody threshold effect information in the conditional variance beyond that in the conditional mean. Given the threshold point estimates, we propose new estimates for the slope parameters. The first is a by-product of the CF approach, and the second type employs generalized method of moment (GMM) procedures based on two new sets of moment conditions. Simulation studies, in conjunction with the limit theory, show that our second CF estimator and confidence interval for the threshold point together with the associated second GMM estimator and confidence interval for the slope parameter dominate the other methods. We further apply the new estimation methodology to an empirical application from international trade to illustrate its usefulness in practice.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466623000014","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

Abstract

This paper studies control function (CF) approaches in endogenous threshold regression where the threshold variable is allowed to be endogenous. We first use a simple example to show that the structural threshold regression (STR) estimator of the threshold point in Kourtellos, Stengos and Tan (2016, Econometric Theory 32, 827–860) is inconsistent unless the endogeneity level of the threshold variable is low compared to the threshold effect. We correct the CF in the STR estimator to generate our first CF estimator using a method that extends the two-stage least squares procedure in Caner and Hansen (2004, Econometric Theory 20, 813–843). We develop our second CF estimator which can be treated as an extension of the classical CF approach in endogenous linear regression. Both these approaches embody threshold effect information in the conditional variance beyond that in the conditional mean. Given the threshold point estimates, we propose new estimates for the slope parameters. The first is a by-product of the CF approach, and the second type employs generalized method of moment (GMM) procedures based on two new sets of moment conditions. Simulation studies, in conjunction with the limit theory, show that our second CF estimator and confidence interval for the threshold point together with the associated second GMM estimator and confidence interval for the slope parameter dominate the other methods. We further apply the new estimation methodology to an empirical application from international trade to illustrate its usefulness in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内生性阈值回归中的新控制函数方法
本文研究了允许阈值变量为内生的内生阈值回归中的控制函数方法。我们首先使用一个简单的例子来表明,除非阈值变量的内生性水平与阈值效应相比较低,否则Kourtelos、Stengos和Tan(2016,计量经济学理论32827-860)中阈值点的结构阈值回归(STR)估计量是不一致的。我们使用Caner和Hansen(2004,Ecometric Theory 20813-843)中扩展两阶段最小二乘法的方法来校正STR估计器中的CF,以生成我们的第一个CF估计器。我们开发了我们的第二个CF估计器,它可以被视为内生线性回归中经典CF方法的扩展。这两种方法都在条件方差中体现了阈值效应信息,而不是在条件均值中。给定阈值点估计,我们提出了斜率参数的新估计。第一种是CF方法的副产品,第二种是基于两组新的矩条件的广义矩方法。结合极限理论的仿真研究表明,我们的第二个CF估计器和阈值点的置信区间以及相关的第二GMM估计器与斜率参数的置信区间在其他方法中占主导地位。我们进一步将新的估计方法应用于国际贸易的实证应用,以说明其在实践中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
期刊最新文献
INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS UNDER UNCONDITIONAL HETEROSKEDASTICITY EFFICIENCY IN ESTIMATION UNDER MONOTONIC ATTRITION WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS APPLICATIONS OF FUNCTIONAL DEPENDENCE TO SPATIAL ECONOMETRICS IDENTIFICATION AND STATISTICAL DECISION THEORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1