ВПЛИВ ДОБАВОК МІКРОВОЛАСТОНІТУ НА КРИСТАЛІЗАЦІЮ ПОРИСТИХ СКЛОКРИСТАЛІЧНИХ МАТЕРІАЛІВ ІЗ ВМІСТОМ РІЗНИХ ВИДІВ ГАЗОУТВОРЮВАЧІВ

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemistry and Technologies Pub Date : 2022-10-31 DOI:10.15421/jchemtech.v30i3.254049
Ярослава І. Лихолат, Світлана І. Пєтух
{"title":"ВПЛИВ ДОБАВОК МІКРОВОЛАСТОНІТУ НА КРИСТАЛІЗАЦІЮ ПОРИСТИХ СКЛОКРИСТАЛІЧНИХ МАТЕРІАЛІВ ІЗ ВМІСТОМ РІЗНИХ ВИДІВ ГАЗОУТВОРЮВАЧІВ","authors":"Ярослава І. Лихолат, Світлана І. Пєтух","doi":"10.15421/jchemtech.v30i3.254049","DOIUrl":null,"url":null,"abstract":"У роботі проведені дослідження, спрямовані на підвищення міцності пористих склокристалічних матеріалів за рахунок утворення в міжпорових перегородках голчастих кристалів воластоніту, що мають армуючий ефект. Пористі матеріали отримували на основі бою скла з використанням в якості газоутворювачів сировини природного (суглинки) та техногенного (мартенівський та доменний шлаки, зола–унесення) походження. До складу сумішей скла з газоутворювачами вводили добавки мікроволастоніту в кількості 1.5–7.5 мас. ч. Випал зразків здійснювали за температур 750–850 °С в залежності від виду газоутворювача. За допомогою диференційно–термічного аналізу було досліджено процеси, що відбуваються в дослідних шихтах з вмістом добавки мікроволастоніту в умовах нагрівання, а за допомогою рентгенофазового аналізу – зміну фазового складу матеріалів після випалу. Для дослідних зразків визначали об’ємну вагу (кг/м3), міцність на стиск (МПа) та розраховували коефіцієнт конструктивної якості. У результаті проведеної роботи встановлено, що додавання мікроволастоніту сприяє утворенню в матеріалах воластоніту як основної кристалічної фази незалежно від виду газоутворювача та підвищує їх міцність до 6.3 МПа. Коефіцієнт конструктивної якості зразків, до складу яких вводили мікроволастоніт в кількості від 1.5 до 4.5 мас. ч., збільшується в середньому на 10 %, подальше ж його введення сприяє зниженню показників зазначеного коефіцієнту за рахунок зростання об’ємної ваги матеріалів та не є доцільним.","PeriodicalId":41282,"journal":{"name":"Journal of Chemistry and Technologies","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/jchemtech.v30i3.254049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

У роботі проведені дослідження, спрямовані на підвищення міцності пористих склокристалічних матеріалів за рахунок утворення в міжпорових перегородках голчастих кристалів воластоніту, що мають армуючий ефект. Пористі матеріали отримували на основі бою скла з використанням в якості газоутворювачів сировини природного (суглинки) та техногенного (мартенівський та доменний шлаки, зола–унесення) походження. До складу сумішей скла з газоутворювачами вводили добавки мікроволастоніту в кількості 1.5–7.5 мас. ч. Випал зразків здійснювали за температур 750–850 °С в залежності від виду газоутворювача. За допомогою диференційно–термічного аналізу було досліджено процеси, що відбуваються в дослідних шихтах з вмістом добавки мікроволастоніту в умовах нагрівання, а за допомогою рентгенофазового аналізу – зміну фазового складу матеріалів після випалу. Для дослідних зразків визначали об’ємну вагу (кг/м3), міцність на стиск (МПа) та розраховували коефіцієнт конструктивної якості. У результаті проведеної роботи встановлено, що додавання мікроволастоніту сприяє утворенню в матеріалах воластоніту як основної кристалічної фази незалежно від виду газоутворювача та підвищує їх міцність до 6.3 МПа. Коефіцієнт конструктивної якості зразків, до складу яких вводили мікроволастоніт в кількості від 1.5 до 4.5 мас. ч., збільшується в середньому на 10 %, подальше ж його введення сприяє зниженню показників зазначеного коефіцієнту за рахунок зростання об’ємної ваги матеріалів та не є доцільним.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用来自gasouthrouthrouthrouthrouthroothrouthroushrouthrouthrouthroothroothroushroushroothrouthruthrouthrouth的杂项材料的微孔活性
已经进行了研究,以提高具有芳香作用的志愿者的金色晶体内部沉淀中的多孔晶体材料的强度。使用过的材料是从玻璃战争中获得的,用作天然(煤炭)和技术(亚美尼亚和国内)原料气体发生器。玻璃与气体配方的混合物由1.5-7.5质量的微波吨组成。h。根据气体发生器的类型,在750-850°C下排放样品。差热分析研究了在加热条件下含有小分子供应的研究芯片中的过程,-以及通过X射线分析,燃烧后材料的相组成的变化。对于样品,他们确定了体积重量(kg/m3)、压力强度(MPA),并计算了结构质量系数。由于所做的工作,发现无论产气材料的类型如何,小分子的加入都有助于形成作为基本结晶相的志愿材料,并将其强度提高到6.3MB。在1.5至4.5最大h的范围内引入小分子的样品的构造质量系数。平均增加10%,并且其引入有助于在材料的相对重量增加方面降低给定系数的指数,并且不是完美的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemistry and Technologies
Journal of Chemistry and Technologies CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
0.80
自引率
40.00%
发文量
39
期刊最新文献
ВИБІР ФУНКЦІОНАЛЬНИХ КОМПОНЕНТІВ З РОСЛИННОЇ СИРОВИНИ ТА ЗАСТОСУВАНЯ ЇХ В РЕЦЕПТУРАХ ШОКОЛАДНИХ МАС ЗМІНА ОСНОВНИХ ПОКАЗНИКІВ ЯКОСТІ ОЛИВ У ПРОЦЕСІ ЕКСПЛУАТАЦІЇ ГЕЛІКОПТЕРІВ «AIRBUS HELICOPTERS H-145» N-ЗАМІЩЕНІ ПІРИДИНОВІ СОЛІ З АНІОНОМ ФТАЛІМІД-N-ОКСИЛУ ФЛУОРЕСЦЕНТНЕ КІЛЬКІСНЕ ВИЗНАЧЕННЯ АДСОРБЦІЇ ПЕПТИДІВ НА ДІОКСИДІ ТИТАНУ АДГЕЗІЙНА МІЦНІСТЬ ЕЛЕКТРООСАДЖЕНИХ МЕТАЛЕВИХ ПЛІВОК З МЕТАЛЕВИМИ ПІДКЛАДКАМИ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1