{"title":"Model-Based VF Technique for Parasitic Reflections Reduction of Frequency-Domain Chipless RFID Systems","authors":"Javad Aliasgari, N. Karmakar","doi":"10.1109/LMWC.2022.3194322","DOIUrl":null,"url":null,"abstract":"In a frequency-domain chipless RFID system, the backscattered signal from a tag is directly obtained in the frequency domain over limited bandwidth. However, to reduce the parasitic reflections, it is crucial to obtain the backscattered signal in the time domain. This letter proposes a precise quasi-analytic method, known as the model-based vector fitting (VF) technique, to provide the closed-form equation of the backscattered response in the time domain. The proposed method successfully recovers a tag’s identification (ID) among parasitic reflections using a single tag measurement without requiring prior knowledge about the tag.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3194322","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
In a frequency-domain chipless RFID system, the backscattered signal from a tag is directly obtained in the frequency domain over limited bandwidth. However, to reduce the parasitic reflections, it is crucial to obtain the backscattered signal in the time domain. This letter proposes a precise quasi-analytic method, known as the model-based vector fitting (VF) technique, to provide the closed-form equation of the backscattered response in the time domain. The proposed method successfully recovers a tag’s identification (ID) among parasitic reflections using a single tag measurement without requiring prior knowledge about the tag.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.