Yangyang Lai, K. Pan, Yuqiao Cen, Junbo Yang, Chongyang Cai, Pengcheng Yin, Seungbae Park
{"title":"An intelligent system for reflow oven temperature settings based on hybrid physics-machine learning model","authors":"Yangyang Lai, K. Pan, Yuqiao Cen, Junbo Yang, Chongyang Cai, Pengcheng Yin, Seungbae Park","doi":"10.1108/ssmt-10-2021-0063","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to provide the proper preset temperatures of the convection reflow oven when reflowing a printed circuit board (PCB) assembly with varied sizes of components simultaneously.\n\n\nDesign/methodology/approach\nIn this study, computational fluid dynamics modeling is used to simulate the reflow soldering process. The training data provided to the machine learning (ML) model is generated from a programmed system based on the physics model. Support vector regression and an artificial neural network are used to validate the accuracy of ML models.\n\n\nFindings\nIntegrated physical and ML models synergistically can accurately predict reflow profiles of solder joints and alleviate the expense of repeated trials. Using this system, the reflow oven temperature settings to achieve the desired reflow profile can be obtained at substantially reduced computation cost.\n\n\nPractical implications\nThe prediction of the reflow profile subjected to varied temperature settings of the reflow oven is beneficial to process engineers when reflowing bulky components. The study of reflowing a new PCB assembly can be started at the early stage of board design with no need for a physical profiling board prototype.\n\n\nOriginality/value\nThis study provides a smart solution to determine the optimal preset temperatures of the reflow oven, which is usually relied on experience. The hybrid physics–ML model providing accurate prediction with the significantly reduced expense is used in this application for the first time.\n","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-10-2021-0063","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12
Abstract
Purpose
This paper aims to provide the proper preset temperatures of the convection reflow oven when reflowing a printed circuit board (PCB) assembly with varied sizes of components simultaneously.
Design/methodology/approach
In this study, computational fluid dynamics modeling is used to simulate the reflow soldering process. The training data provided to the machine learning (ML) model is generated from a programmed system based on the physics model. Support vector regression and an artificial neural network are used to validate the accuracy of ML models.
Findings
Integrated physical and ML models synergistically can accurately predict reflow profiles of solder joints and alleviate the expense of repeated trials. Using this system, the reflow oven temperature settings to achieve the desired reflow profile can be obtained at substantially reduced computation cost.
Practical implications
The prediction of the reflow profile subjected to varied temperature settings of the reflow oven is beneficial to process engineers when reflowing bulky components. The study of reflowing a new PCB assembly can be started at the early stage of board design with no need for a physical profiling board prototype.
Originality/value
This study provides a smart solution to determine the optimal preset temperatures of the reflow oven, which is usually relied on experience. The hybrid physics–ML model providing accurate prediction with the significantly reduced expense is used in this application for the first time.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.