Second-grade elasticity of three-dimensional pantographic lattices: theory and numerical experiments

IF 1.9 4区 工程技术 Q3 MECHANICS Continuum Mechanics and Thermodynamics Pub Date : 2023-07-13 DOI:10.1007/s00161-023-01240-w
Ivan Giorgio, Francesco dell’Isola, David J. Steigmann
{"title":"Second-grade elasticity of three-dimensional pantographic lattices: theory and numerical experiments","authors":"Ivan Giorgio,&nbsp;Francesco dell’Isola,&nbsp;David J. Steigmann","doi":"10.1007/s00161-023-01240-w","DOIUrl":null,"url":null,"abstract":"<div><p>A continuum theory of pantographic lattices, based on second-grade elasticity, is presented. The proposed model is able to describe the mechanical behavior of a type of material structure made up of multiple layers of pantographic sheets connected with a third family of fibers. Thus, these materials are characterized by an orthogonal pattern of fibers that can bend, stretch and twist. Numerical experiments illustrate the predictive potential of the model when the material is subjected to different types of mechanical loads, including compression, torsion and two kinds of bending. Analyzing the material responses for these various tests makes it possible to reveal unusual deformation patterns characteristic of such “pantographic blocks.” Numerical simulations using the finite element method are intended to assist in designing an experimental program using 3D-printed specimens made of different materials.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 5","pages":"1181 - 1193"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-023-01240-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01240-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A continuum theory of pantographic lattices, based on second-grade elasticity, is presented. The proposed model is able to describe the mechanical behavior of a type of material structure made up of multiple layers of pantographic sheets connected with a third family of fibers. Thus, these materials are characterized by an orthogonal pattern of fibers that can bend, stretch and twist. Numerical experiments illustrate the predictive potential of the model when the material is subjected to different types of mechanical loads, including compression, torsion and two kinds of bending. Analyzing the material responses for these various tests makes it possible to reveal unusual deformation patterns characteristic of such “pantographic blocks.” Numerical simulations using the finite element method are intended to assist in designing an experimental program using 3D-printed specimens made of different materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维哑图格的二阶弹性:理论与数值实验
本文介绍了基于二级弹性的受电弓格构连续体理论。所提出的模型能够描述一种由多层泛影薄片和第三种纤维连接而成的材料结构的机械行为。因此,这些材料的特点是纤维的正交模式可以弯曲、拉伸和扭曲。当材料受到不同类型的机械载荷(包括压缩、扭转和两种弯曲)时,数值实验说明了该模型的预测潜力。通过分析材料在这些不同测试中的反应,可以揭示这种 "受电块 "特有的不寻常变形模式。使用有限元法进行数值模拟的目的是协助设计使用由不同材料制成的 3D 打印试样的实验程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
期刊最新文献
An analytical model for debonding of composite cantilever beams under point loads Predictive models for bone remodeling during orthodontic tooth movement: a scoping review on the “biological metamaterial” periodontal ligament interface Mixed FEM implementation of three-point bending of the beam with an edge crack within strain gradient elasticity theory An enhanced beam model incorporating a hysteresis-based solid friction damping mechanism for cementitious materials A frequency-dependent model for bone remodeling using a micromorphic porous medium subjected to harmonic mechanical loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1