Isabella Fessl, Eric Harbour, J. Kröll, H. Schwameder
{"title":"Effect of Additional Loads on Joint Kinetics and Joint Work Contribution in Males and Females Performing Vertical Countermovement Jumps","authors":"Isabella Fessl, Eric Harbour, J. Kröll, H. Schwameder","doi":"10.3390/biomechanics2030025","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the effect of additional loads and sex on countermovement jump (CMJ) joint kinetics during the entire take-off impulse in males and females. Twelve female and 13 male sport students performed vertical countermovement jumps without and with additional loads up to +80% of body mass using a straight barbell. Ground reaction forces and body kinematics were collected simultaneously. A significant increase was found for peak ankle power, whereas knee and hip peak power decreased significantly as additional load increased in both males and females. Joint work increased in each joint as additional load increased, although significance was observed only in the hip joint. Peak power of each joint (22–47%) and total hip work (61%) were significantly higher for males than females. Relative joint contributions to total joint work (“joint work contribution”) remained stable as additional loads increased, whereas meaningful differences were found in the magnitudes of joint work contribution between males and females. CMJ joint kinetics and joint work contributions were distinctly influenced by additional load and sex. Hence, these differences should be considered when prescribing loaded jumps for training or testing.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics2030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study aimed to investigate the effect of additional loads and sex on countermovement jump (CMJ) joint kinetics during the entire take-off impulse in males and females. Twelve female and 13 male sport students performed vertical countermovement jumps without and with additional loads up to +80% of body mass using a straight barbell. Ground reaction forces and body kinematics were collected simultaneously. A significant increase was found for peak ankle power, whereas knee and hip peak power decreased significantly as additional load increased in both males and females. Joint work increased in each joint as additional load increased, although significance was observed only in the hip joint. Peak power of each joint (22–47%) and total hip work (61%) were significantly higher for males than females. Relative joint contributions to total joint work (“joint work contribution”) remained stable as additional loads increased, whereas meaningful differences were found in the magnitudes of joint work contribution between males and females. CMJ joint kinetics and joint work contributions were distinctly influenced by additional load and sex. Hence, these differences should be considered when prescribing loaded jumps for training or testing.