Multiscale optimization of the viscoelastic behavior of short fiber reinforced composites

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL International Journal of Mechanics and Materials in Design Pub Date : 2023-05-16 DOI:10.1007/s10999-023-09645-w
Julian Marr, Lukas Zartmann, Doris Reinel-Bitzer, Heiko Andrä, Ralf Müller
{"title":"Multiscale optimization of the viscoelastic behavior of short fiber reinforced composites","authors":"Julian Marr,&nbsp;Lukas Zartmann,&nbsp;Doris Reinel-Bitzer,&nbsp;Heiko Andrä,&nbsp;Ralf Müller","doi":"10.1007/s10999-023-09645-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a multiscale optimization approach for composite material design is presented. The objective is to find different material designs for a short fiber reinforced polymer (SFRP) with a desired effective (in general anisotropic) viscoelastic behavior. The paper extends the work of Staub et al. (2012) and proposes a combination of material homogenization, surrogate modeling, parameter optimization and robustness analysis. A variety of microstructure design parameters including the fiber volume fraction, the fiber orientation distribution, the linear elastic fiber properties, and the temperature dependent material behavior are considered. For the solution of the structural optimization problem, a surrogate-based optimization framework is developed. The individual steps of that framework consist of using design of experiments (DoE) for the sampling of the constraint material design space, numerical homogenization for the creation of a material property database, a surrogate modeling approach for the interpolation of the single effective viscoelastic parameters and the use of differential evolution (DE) for optimization. In the numerical homogenization step, creep simulations on virtually created representative volume elements (RVEs) are performed and a fast Fourier transform (FFT)-based homogenization is used to obtain the effective viscoelastic material parameters. For every identified optimal design, the robustness is evaluated. The considered Kriging surrogate models of Kriging type have a high prediction accuracy. Numerical examples demonstrate the efficiency of the proposed approach in determining SFRPs with target viscoelastic behavior. An experimental validation shows a good agreement of the homogenization method with corresponding measurements. During the manufacturing of composite parts, the results of such optimizations allow a consideration of the local microstructure in order to achieve the desired macroscopic viscoelastic behavior.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 3","pages":"501 - 519"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09645-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a multiscale optimization approach for composite material design is presented. The objective is to find different material designs for a short fiber reinforced polymer (SFRP) with a desired effective (in general anisotropic) viscoelastic behavior. The paper extends the work of Staub et al. (2012) and proposes a combination of material homogenization, surrogate modeling, parameter optimization and robustness analysis. A variety of microstructure design parameters including the fiber volume fraction, the fiber orientation distribution, the linear elastic fiber properties, and the temperature dependent material behavior are considered. For the solution of the structural optimization problem, a surrogate-based optimization framework is developed. The individual steps of that framework consist of using design of experiments (DoE) for the sampling of the constraint material design space, numerical homogenization for the creation of a material property database, a surrogate modeling approach for the interpolation of the single effective viscoelastic parameters and the use of differential evolution (DE) for optimization. In the numerical homogenization step, creep simulations on virtually created representative volume elements (RVEs) are performed and a fast Fourier transform (FFT)-based homogenization is used to obtain the effective viscoelastic material parameters. For every identified optimal design, the robustness is evaluated. The considered Kriging surrogate models of Kriging type have a high prediction accuracy. Numerical examples demonstrate the efficiency of the proposed approach in determining SFRPs with target viscoelastic behavior. An experimental validation shows a good agreement of the homogenization method with corresponding measurements. During the manufacturing of composite parts, the results of such optimizations allow a consideration of the local microstructure in order to achieve the desired macroscopic viscoelastic behavior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短纤维增强复合材料粘弹性性能的多尺度优化
本文提出了一种复合材料设计的多尺度优化方法。目的是为短纤维增强聚合物(SFRP)找到不同的材料设计,使其具有所需的有效(一般各向异性)粘弹性行为。本文扩展了Staub等人(2012)的工作,提出了材料均匀化、代理建模、参数优化和鲁棒性分析相结合的方法。考虑了多种微观结构设计参数,包括纤维体积分数、纤维取向分布、线弹性纤维性能和温度相关的材料性能。针对结构优化问题,提出了一种基于代理的优化框架。该框架的各个步骤包括使用实验设计(DoE)对约束材料设计空间进行采样,使用数值均匀化创建材料属性数据库,使用代理建模方法对单个有效粘弹性参数进行插值,以及使用差分进化(DE)进行优化。在数值均匀化步骤中,对虚拟创建的代表性体积单元(RVEs)进行蠕变模拟,并采用基于快速傅里叶变换(FFT)的均匀化方法获得有效的粘弹性材料参数。对每一个确定的最优设计,进行鲁棒性评估。所考虑的Kriging代理模型具有较高的预测精度。数值算例验证了该方法在确定具有目标粘弹性特性的SFRPs时的有效性。实验验证表明,均质化方法与相应的测量值吻合良好。在复合材料零件的制造过程中,这种优化的结果允许考虑局部微观结构,以实现所需的宏观粘弹性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
期刊最新文献
Strength and stability analysis of composite inverted conical structure Multi-objective topology optimization for materials with negative Poisson’s ratio and thermal insulation An efficient approximation algorithm for variance global sensitivity by Bayesian updating Theoretical prediction and experimental verification of thermomechanical deflection responses of geometrically nonlinear porous graded curved structure Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1