Transformer Health Monitoring Using Dissolved Gas Analysis

IF 1 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Prognostics and Health Management Pub Date : 2022-07-12 DOI:10.36001/ijphm.2022.v13i2.3141
C. Walker, Ahmad Y. Al Rashdan, V. Agarwal
{"title":"Transformer Health Monitoring Using Dissolved Gas Analysis","authors":"C. Walker, Ahmad Y. Al Rashdan, V. Agarwal","doi":"10.36001/ijphm.2022.v13i2.3141","DOIUrl":null,"url":null,"abstract":"As integral components of any power plant, transformers sup-ply the generated electricity to the grid. However, the trans-former’s cellulose-based paper insulation and the mineral oilin which it is immersed break down over time under stan-dard operating conditions—or more rapidly due to potentialfaults within the system. This technical brief exhibits a col-lection of diagnostic and prognostic techniques that utilitiescan adopted in lieu of labor-intense periodic preventive main-tenance routines. Furthermore, prognostic models have beenincorporated using the latest version of the Institute of Elec-trical and Electronics Engineers (IEEE) standard (IEEE StdC57.104TM-2019) for dissolved gas analysis (DGA), thusexpanding it to include estimation of the time to maintenance.Overall, four different methodologies are explained, each ofwhich aid in determining a transformer’s state of health. Thesemethodologies include the Chendong model, the IEEE C57.91-2011 thermal life consumption model, a diagnostic model forDGA, and a prognostic model for DGA that uses an autore-gressive integrated moving average (ARIMA) model. An ad-ditional improvement for estimating missing system parame-ters from monitoring data (i.e., a tool for parameter estimationutilizing Powell’s method) is presented, enabling the IEEEthermal life consumption model to benefit not only the col-laborating power plant, but also the power industry at large.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2022.v13i2.3141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As integral components of any power plant, transformers sup-ply the generated electricity to the grid. However, the trans-former’s cellulose-based paper insulation and the mineral oilin which it is immersed break down over time under stan-dard operating conditions—or more rapidly due to potentialfaults within the system. This technical brief exhibits a col-lection of diagnostic and prognostic techniques that utilitiescan adopted in lieu of labor-intense periodic preventive main-tenance routines. Furthermore, prognostic models have beenincorporated using the latest version of the Institute of Elec-trical and Electronics Engineers (IEEE) standard (IEEE StdC57.104TM-2019) for dissolved gas analysis (DGA), thusexpanding it to include estimation of the time to maintenance.Overall, four different methodologies are explained, each ofwhich aid in determining a transformer’s state of health. Thesemethodologies include the Chendong model, the IEEE C57.91-2011 thermal life consumption model, a diagnostic model forDGA, and a prognostic model for DGA that uses an autore-gressive integrated moving average (ARIMA) model. An ad-ditional improvement for estimating missing system parame-ters from monitoring data (i.e., a tool for parameter estimationutilizing Powell’s method) is presented, enabling the IEEEthermal life consumption model to benefit not only the col-laborating power plant, but also the power industry at large.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用溶解气体分析进行变压器健康监测
作为任何发电厂的组成部分,变压器向电网提供发电。然而,在标准操作条件下,变压器的纤维素基绝缘纸和浸入其中的矿物油会随着时间的推移而分解,或者由于系统内的潜在故障而更快地分解。本技术简介展示了诊断和预后技术的集合,公用事业公司可以采用这些技术来代替劳动密集型的定期预防性维护程序。此外,使用最新版本的电气和电子工程师协会(IEEE)标准(IEEE StdC57.104TM-2019)纳入了预测模型,用于溶解气体分析(DGA),从而将其扩展到包括维护时间的估计。总的来说,解释了四种不同的方法,每一种方法都有助于确定变压器的健康状态。这些方法包括陈东模型、IEEE C57.91-2011热寿命消耗模型、诊断模型forDGA和使用自回归综合移动平均(ARIMA)模型的DGA预测模型。提出了从监测数据中估计缺失系统参数的额外改进(即利用Powell方法进行参数估计的工具),使ieee热寿命消耗模型不仅有利于合作电厂,而且有利于整个电力工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
期刊最新文献
Accelerated Life Testing Dataset for Lithium-Ion Batteries with Constant and Variable Loading Conditions Auxiliary Particle Filter for Prognostics and Health Management Fault- Tolerant DC-DC Converter with Zero Interruption Time Using Capacitor Health Prognosis RUL Prognostics The Study of Trends in AI Applications for Vehicle Maintenance Through Keyword Co-occurrence Network Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1