An Impedance Matcher for Microwave Rectifier to Broaden Load Range

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Microwave and Wireless Components Letters Pub Date : 2022-10-01 DOI:10.1109/LMWC.2022.3174203
Jianyu Chen, Hui Xiao, H. Xiong, D. Xiao, Wei-Chang Song, Huaiqing Zhang
{"title":"An Impedance Matcher for Microwave Rectifier to Broaden Load Range","authors":"Jianyu Chen, Hui Xiao, H. Xiong, D. Xiao, Wei-Chang Song, Huaiqing Zhang","doi":"10.1109/LMWC.2022.3174203","DOIUrl":null,"url":null,"abstract":"In this letter, a novel impedance matcher (IM) is designed based on Zeta converter to overcome the shortcomings of other impedance matching methods and improve the load range in low resistances. System-level verification demonstrates that the novel IM has a potential application value for microwave wireless power transmission (MWPT) system. Measurement results show the maximum power conversion efficiency (PCE) of the novel rectifier with IM can reach 73% when the input power is 32 dBm. In addition, the proposed rectifier circuit with IM can operate with above 60% overall efficiency when the load varies from 0.01 to 10 $\\text{k}\\Omega $ (1:1000) as input power of 32 dBm. Compared with that without IM, the application of IM can increase the load range by at least 1100% when the rectifier efficiency is >50.7%. The measurement results demonstrate that the rectifier circuit has a better performance when connected to the novel IM.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1215-1218"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3174203","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

In this letter, a novel impedance matcher (IM) is designed based on Zeta converter to overcome the shortcomings of other impedance matching methods and improve the load range in low resistances. System-level verification demonstrates that the novel IM has a potential application value for microwave wireless power transmission (MWPT) system. Measurement results show the maximum power conversion efficiency (PCE) of the novel rectifier with IM can reach 73% when the input power is 32 dBm. In addition, the proposed rectifier circuit with IM can operate with above 60% overall efficiency when the load varies from 0.01 to 10 $\text{k}\Omega $ (1:1000) as input power of 32 dBm. Compared with that without IM, the application of IM can increase the load range by at least 1100% when the rectifier efficiency is >50.7%. The measurement results demonstrate that the rectifier circuit has a better performance when connected to the novel IM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩宽负载范围的微波整流器阻抗匹配器
本文在Zeta变换器的基础上设计了一种新型的阻抗匹配器,以克服其他阻抗匹配方法的缺点,提高低电阻下的负载范围。系统级验证表明,新型IM在微波无线功率传输(MWPT)系统中具有潜在的应用价值。测量结果表明,当输入功率为32dBm时,新型IM整流器的最大功率转换效率可达73%。此外,当负载从0.01到10$\text{k}\Omega$(1:1000)变化为32dBm的输入功率时,所提出的具有IM的整流器电路可以以60%以上的总效率运行。与没有IM的情况相比,当整流器效率>50.7%时,IM的应用可以使负载范围至少增加1100%。测量结果表明,当连接到新型IM时,整流器电路具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
期刊最新文献
A Broadband Ka-Band Waveguide Magic-T With Compact Inner Ridge Matching A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology A Low Power Sub-GHz Wideband LNA Employing Current-Reuse and Device-Reuse Positive Shunt-Feedback Technique Accurate Magnetic Coupling Coefficient Modeling of 3-D Transformer Based on TSV Effect of Different Shapes on the Measurement of Dielectric Constants of Low-Loss Materials With Rectangular Waveguides at X-Band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1