Zakaria Mehrab, A. Adiga, M. Marathe, S. Venkatramanan, S. Swarup
{"title":"Evaluating the Utility of High-Resolution Proximity Metrics in Predicting the Spread of COVID-19","authors":"Zakaria Mehrab, A. Adiga, M. Marathe, S. Venkatramanan, S. Swarup","doi":"10.1145/3531006","DOIUrl":null,"url":null,"abstract":"High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ordinary differential equation based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We also evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and an 87% F1-score.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 3
Abstract
High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ordinary differential equation based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We also evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and an 87% F1-score.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.