{"title":"Brain Stimulation Therapies in Neuropsychiatric and Neurodegenerative Diseases","authors":"I. Martins","doi":"10.29011/2577-0616.000127","DOIUrl":null,"url":null,"abstract":"Brain stimulation therapies for the treatment of neuropsychiatric and neurodegenerative diseases [1] have become of major interest to various global communities. Neuropsychiatric and neurodegenerative diseases associated with insulin resistance are expected to affect millions of people by the year 2050 [2,3]. The treatment by brain stimulation therapies in the early stages of neuropsychiatric conditions may allow stabilization or reversal of various conditions such as depression, schizophrenia, bipolar disorders, behavioural, cognition and memory disorders. Brain stimulation therapies include Electroconvulsive Therapy (ECT), Vagus Nerve Stimulation (VNS), Deep Brain Stimulation (DBS), Transcranial Direct Current Stimulation (tDCS) and repetitive transcranial magnetic stimulation. Brain stimulation therapies such as ECT should be reassessed with relevance to dose and frequency for the treatment of psychiatric and behavioral disorders. The major concern with ECT is associated with excessive heat generation and inactivation of genes required for neuron survival [4]. In diabetes and neurodegenerative diseases drug therapy may not be effective for depression and schizophrenia with unsuccessful anti-depressant or anti-psychotic drug treatment. Brain stimulation therapies such as ECT, VNS, DBS, tDCS and rTMS that use direct electrical currents to stimulate specific parts of the brain may be therapeutic when drug treatment is ineffective. However, brain treatment by these different stimulation therapies need to be compared with relevance to excessive heat generation with compete heat shock gene inactivation that leads to accelerated neuron death [5]. In man the heat shock gene Sirtuin 1 is essential to maintain mitochondrial function and its inactivation is associated with neuron mitophagy [4,5].","PeriodicalId":92381,"journal":{"name":"International journal of genomics and data mining","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of genomics and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29011/2577-0616.000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Brain stimulation therapies for the treatment of neuropsychiatric and neurodegenerative diseases [1] have become of major interest to various global communities. Neuropsychiatric and neurodegenerative diseases associated with insulin resistance are expected to affect millions of people by the year 2050 [2,3]. The treatment by brain stimulation therapies in the early stages of neuropsychiatric conditions may allow stabilization or reversal of various conditions such as depression, schizophrenia, bipolar disorders, behavioural, cognition and memory disorders. Brain stimulation therapies include Electroconvulsive Therapy (ECT), Vagus Nerve Stimulation (VNS), Deep Brain Stimulation (DBS), Transcranial Direct Current Stimulation (tDCS) and repetitive transcranial magnetic stimulation. Brain stimulation therapies such as ECT should be reassessed with relevance to dose and frequency for the treatment of psychiatric and behavioral disorders. The major concern with ECT is associated with excessive heat generation and inactivation of genes required for neuron survival [4]. In diabetes and neurodegenerative diseases drug therapy may not be effective for depression and schizophrenia with unsuccessful anti-depressant or anti-psychotic drug treatment. Brain stimulation therapies such as ECT, VNS, DBS, tDCS and rTMS that use direct electrical currents to stimulate specific parts of the brain may be therapeutic when drug treatment is ineffective. However, brain treatment by these different stimulation therapies need to be compared with relevance to excessive heat generation with compete heat shock gene inactivation that leads to accelerated neuron death [5]. In man the heat shock gene Sirtuin 1 is essential to maintain mitochondrial function and its inactivation is associated with neuron mitophagy [4,5].