{"title":"Unsupervised Minimum Redundancy Maximum Relevance Feature Selection for Predictive Maintenance","authors":"V. Hamaide, F. Glineur","doi":"10.36001/ijphm.2021.v12i2.2955","DOIUrl":null,"url":null,"abstract":"Identifying and selecting optimal prognostic health indicators in the context of predictive maintenance is essential to obtain a good model and make accurate predictions. Several metrics have been proposed in the past decade to quantify the relevance of those prognostic parameters. Other works have used the well-known minimum redundancy maximum relevance (mRMR) algorithm to select features that are both relevant and non-redundant. However, the relevance criterion is based on labelled machine malfunctions which are not always available in real life scenarios. In this paper, we develop a prognostic mRMR feature selection, an adaptation of the conventional mRMR algorithm, to a situation where class labels are a priori unknown, which we call unsupervised feature selection. In addition, this paper proposes new metrics for computing the relevance and compares different methods to estimate redundancy between features. We show that using unsupervised feature selection as well as adapting relevance metrics with the dynamic time warping algorithm help increase the effectiveness of the selection of health indicators for a rotating machine case study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2021.v12i2.2955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Identifying and selecting optimal prognostic health indicators in the context of predictive maintenance is essential to obtain a good model and make accurate predictions. Several metrics have been proposed in the past decade to quantify the relevance of those prognostic parameters. Other works have used the well-known minimum redundancy maximum relevance (mRMR) algorithm to select features that are both relevant and non-redundant. However, the relevance criterion is based on labelled machine malfunctions which are not always available in real life scenarios. In this paper, we develop a prognostic mRMR feature selection, an adaptation of the conventional mRMR algorithm, to a situation where class labels are a priori unknown, which we call unsupervised feature selection. In addition, this paper proposes new metrics for computing the relevance and compares different methods to estimate redundancy between features. We show that using unsupervised feature selection as well as adapting relevance metrics with the dynamic time warping algorithm help increase the effectiveness of the selection of health indicators for a rotating machine case study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.