Dongdong Zhang , Hucheng Pan , Zhihao Zeng , Weineng Tang , Jingren Li , Hongbo Xie , Rongguang Li , Yuping Ren , Gaowu Qin
{"title":"Maximizing precipitation hardening effect enables ultrahigh strength in a coarse-grained Mg-13Gd forging alloy","authors":"Dongdong Zhang , Hucheng Pan , Zhihao Zeng , Weineng Tang , Jingren Li , Hongbo Xie , Rongguang Li , Yuping Ren , Gaowu Qin","doi":"10.1016/j.jma.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a new strategy for achieving ultrahigh strength in the coarse-grained Mg-Gd binary alloy via utilizing recrystallization texture hardening and maximizing precipitation strengthening has been reported. Forging at a much high temperature suppresses dynamic precipitation, enabling the super-saturation of Gd atoms in Mg matrix. This facilitates the formation of fully recrystallized grains with strong texture and induces an exceptionally high precipitation hardening in the following ageing. Therefore, the forged Mg-13Gd sample exhibited extraordinary tensile yield strength (TYS) of ∼430 MPa, in which ageing-induced TYS increment exceeds ∼210 MPa, as the highest record so far in precipitation-hardened Mg communities. These results provide important theoretical guidance for fabricating the large section and high-strength Mg components for industrial applications.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 10","pages":"Pages 4119-4125"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956723000877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a new strategy for achieving ultrahigh strength in the coarse-grained Mg-Gd binary alloy via utilizing recrystallization texture hardening and maximizing precipitation strengthening has been reported. Forging at a much high temperature suppresses dynamic precipitation, enabling the super-saturation of Gd atoms in Mg matrix. This facilitates the formation of fully recrystallized grains with strong texture and induces an exceptionally high precipitation hardening in the following ageing. Therefore, the forged Mg-13Gd sample exhibited extraordinary tensile yield strength (TYS) of ∼430 MPa, in which ageing-induced TYS increment exceeds ∼210 MPa, as the highest record so far in precipitation-hardened Mg communities. These results provide important theoretical guidance for fabricating the large section and high-strength Mg components for industrial applications.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.