Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio
Oscar Felipe Arbeláez Pérez , Karen Alejandra Delgado Varela , Juan David Castañeda Mena
{"title":"Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio","authors":"Oscar Felipe Arbeláez Pérez , Karen Alejandra Delgado Varela , Juan David Castañeda Mena","doi":"10.1016/j.bsecv.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The production of cement depletes natural resources and emits huge amounts of CO<sub>2</sub>. Using waste materials as replacement for cement is a practical solution to produce green concrete. Cane bagasse ash (CBA) and waste glass (WG) have great potential as supplementary cementitious materials. This work presents the effect of the incorporation of cane bagasse ash on mechanical properties and CO<sub>2</sub> emissions of concrete prepared waste glass. Different CBA:WG mass ratio 0:1, 1:3, 1:2, 1:1, 2:1, 3:1 and 1:0 (CBA<!--> <!-->+<!--> <!-->WG<!--> <!-->=<!--> <!-->20%) as cement replacement were prepared. The slump decreased with an increase of waste glass and sugar cane bagasse. The incorporation of sugarcane bagasse ash and waste glass it is not related with the density of concrete due to similar density between cementitious materials. The relative compressive strength increased with inclusion of CBA, the 3:1 mixture exhibited the highest relative compressive strength. The CO<sub>2</sub> emissions were reduced when WG and CBA were incorporated. The addition of cane bagasse ash to concrete prepared with waste glass may be a potential option to mitigate the impact of residues and to reduce the CO<sub>2</sub> emissions in concrete industry.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"62 5","pages":"Pages 443-451"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317522000462","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1
Abstract
The production of cement depletes natural resources and emits huge amounts of CO2. Using waste materials as replacement for cement is a practical solution to produce green concrete. Cane bagasse ash (CBA) and waste glass (WG) have great potential as supplementary cementitious materials. This work presents the effect of the incorporation of cane bagasse ash on mechanical properties and CO2 emissions of concrete prepared waste glass. Different CBA:WG mass ratio 0:1, 1:3, 1:2, 1:1, 2:1, 3:1 and 1:0 (CBA + WG = 20%) as cement replacement were prepared. The slump decreased with an increase of waste glass and sugar cane bagasse. The incorporation of sugarcane bagasse ash and waste glass it is not related with the density of concrete due to similar density between cementitious materials. The relative compressive strength increased with inclusion of CBA, the 3:1 mixture exhibited the highest relative compressive strength. The CO2 emissions were reduced when WG and CBA were incorporated. The addition of cane bagasse ash to concrete prepared with waste glass may be a potential option to mitigate the impact of residues and to reduce the CO2 emissions in concrete industry.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.