Interpretable delta-learning of GW quasiparticle energies from GGA-DFT

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-08-30 DOI:10.1088/2632-2153/acf545
A. Fediai, Patrick Reiser, Jorge Enrique Olivares Peña, W. Wenzel, Pascal Friederich
{"title":"Interpretable delta-learning of GW quasiparticle energies from GGA-DFT","authors":"A. Fediai, Patrick Reiser, Jorge Enrique Olivares Peña, W. Wenzel, Pascal Friederich","doi":"10.1088/2632-2153/acf545","DOIUrl":null,"url":null,"abstract":"Accurate prediction of the ionization potential and electron affinity energies of small molecules are important for many applications. Density functional theory (DFT) is computationally inexpensive, but can be very inaccurate for frontier orbital energies or ionization energies. The GW method is sufficiently accurate for many relevant applications, but much more expensive than DFT. Here we study how we can learn to predict orbital energies with GW accuracy using machine learning (ML) on molecular graphs and fingerprints using an interpretable delta-learning approach. ML models presented here can be used to predict quasiparticle energies of small organic molecules even beyond the size of the molecules used for training. We furthermore analyze the learned DFT-to-GW corrections by mapping them to specific localized fragments of the molecules, in order to develop an intuitive interpretation of the learned corrections, and thus to better understand DFT errors.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/acf545","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of the ionization potential and electron affinity energies of small molecules are important for many applications. Density functional theory (DFT) is computationally inexpensive, but can be very inaccurate for frontier orbital energies or ionization energies. The GW method is sufficiently accurate for many relevant applications, but much more expensive than DFT. Here we study how we can learn to predict orbital energies with GW accuracy using machine learning (ML) on molecular graphs and fingerprints using an interpretable delta-learning approach. ML models presented here can be used to predict quasiparticle energies of small organic molecules even beyond the size of the molecules used for training. We furthermore analyze the learned DFT-to-GW corrections by mapping them to specific localized fragments of the molecules, in order to develop an intuitive interpretation of the learned corrections, and thus to better understand DFT errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GGA-DFT的GW准粒子能量的可解释δ学习
准确预测小分子的电离势和电子亲和能对许多应用都很重要。密度泛函理论(DFT)的计算成本不高,但对前沿轨道能或电离能的计算可能非常不准确。对于许多相关应用,GW方法足够精确,但比DFT昂贵得多。在这里,我们研究了如何使用可解释的三角学习方法,在分子图和指纹上使用机器学习(ML)来学习以GW精度预测轨道能量。这里提出的ML模型可以用来预测小有机分子的准粒子能量,甚至超过用于训练的分子的大小。我们进一步分析了学习到的DFT到gw的校正,将它们映射到分子的特定局部片段,以便对学习到的校正进行直观的解释,从而更好地理解DFT误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. GPU optimization techniques to accelerate optiGAN-a particle simulation GAN. WATUNet: a deep neural network for segmentation of volumetric sweep imaging ultrasound. Generating artificial displacement data of cracked specimen using physics-guided adversarial networks FAIR AI models in high energy physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1