Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network

Yuhang Li, Yilin Luo, Deniz Mengu, Bijie Bai, Aydogan Ozcan
{"title":"Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network","authors":"Yuhang Li, Yilin Luo, Deniz Mengu, Bijie Bai, Aydogan Ozcan","doi":"10.37188/lam.2023.017","DOIUrl":null,"url":null,"abstract":"Quantitative phase imaging (QPI) is a label-free computational imaging technique used in various fields, including biology and medical research. Modern QPI systems typically rely on digital processing using iterative algorithms for phase retrieval and image reconstruction. Here, we report a diffractive optical network trained to convert the phase information of input objects positioned behind random diffusers into intensity variations at the output plane, all-optically performing phase recovery and quantitative imaging of phase objects completely hidden by unknown, random phase diffusers. This QPI diffractive network is composed of successive diffractive layers, axially spanning in total ~70 wavelengths; unlike existing digital image reconstruction and phase retrieval methods, it forms an all-optical processor that does not require external power beyond the illumination beam to complete its QPI reconstruction at the speed of light propagation. This all-optical diffractive processor can provide a low-power, high frame rate and compact alternative for quantitative imaging of phase objects through random, unknown diffusers and can operate at different parts of the electromagnetic spectrum for various applications in biomedical imaging and sensing. The presented QPI diffractive designs can be integrated onto the active area of standard CCD/CMOS-based image sensors to convert an existing optical microscope into a diffractive QPI microscope, performing phase recovery and image reconstruction on a chip through light diffraction within passive structured layers.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.37188/lam.2023.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Quantitative phase imaging (QPI) is a label-free computational imaging technique used in various fields, including biology and medical research. Modern QPI systems typically rely on digital processing using iterative algorithms for phase retrieval and image reconstruction. Here, we report a diffractive optical network trained to convert the phase information of input objects positioned behind random diffusers into intensity variations at the output plane, all-optically performing phase recovery and quantitative imaging of phase objects completely hidden by unknown, random phase diffusers. This QPI diffractive network is composed of successive diffractive layers, axially spanning in total ~70 wavelengths; unlike existing digital image reconstruction and phase retrieval methods, it forms an all-optical processor that does not require external power beyond the illumination beam to complete its QPI reconstruction at the speed of light propagation. This all-optical diffractive processor can provide a low-power, high frame rate and compact alternative for quantitative imaging of phase objects through random, unknown diffusers and can operate at different parts of the electromagnetic spectrum for various applications in biomedical imaging and sensing. The presented QPI diffractive designs can be integrated onto the active area of standard CCD/CMOS-based image sensors to convert an existing optical microscope into a diffractive QPI microscope, performing phase recovery and image reconstruction on a chip through light diffraction within passive structured layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用衍射光网络通过随机扩散器进行定量相位成像
定量相位成像(QPI)是一种无标记的计算成像技术,应用于包括生物学和医学研究在内的各个领域。现代QPI系统通常依赖于使用迭代算法进行相位检索和图像重建的数字处理。在这里,我们报道了一个经过训练的衍射光网络,可以将位于随机扩散器后面的输入物体的相位信息转换为输出平面上的强度变化,对完全被未知随机相位扩散器隐藏的相位物体进行全光相位恢复和定量成像。该QPI衍射网络由连续的衍射层组成,轴向共跨越约70个波长;与现有的数字图像重建和相位恢复方法不同,它形成了一个全光处理器,不需要照明光束以外的外部功率就可以以光的传播速度完成QPI重建。这种全光衍射处理器可以提供低功耗、高帧率和紧凑的替代方案,通过随机、未知的扩散器对相位物体进行定量成像,并且可以在电磁频谱的不同部分工作,用于生物医学成像和传感中的各种应用。所提出的QPI衍射设计可以集成到标准CCD/ cmos图像传感器的有源区域,将现有的光学显微镜转换为衍射QPI显微镜,通过无源结构层内的光衍射在芯片上进行相位恢复和图像重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Ultra-wideband Waveguide-coupled Photodiodes Heterogeneously Integrated on a Thin-film Lithium Niobate Platform Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Front Matter: Volume 12507 Research on key technology of compound polishing of off-axis parabolic mirror Precision polishing of the mandrel for x-ray grazing incidence mirrors in the Einstein probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1