{"title":"Multiple nodal solutions of the Kirchhoff-type problem with a cubic term","authors":"Tao Wang, Yanling Yang, Hui Guo","doi":"10.1515/anona-2022-0225","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , \\left\\{\\begin{array}{l}-\\left(a+b\\mathop{\\displaystyle \\int }\\limits_{{{\\mathbb{R}}}^{N}}| \\nabla u\\hspace{-0.25em}{| }^{2}{\\rm{d}}x\\right)\\Delta u+V\\left(| x| )u=| u\\hspace{-0.25em}{| }^{2}u\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\\\ u\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}),\\end{array}\\right. where a , b > 0 , N = 2 a,b\\gt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| \\nabla u\\hspace{-0.25em}{| }_{{L}^{2}\\left({{\\mathbb{R}}}^{N})}^{2}\\Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | u\\hspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}\\left({{\\mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } \\left\\{{b}_{n}\\right\\} with b n → 0 + , {b}_{n}\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}\\left({{\\mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . \\left\\{\\begin{array}{l}-a\\Delta u+V\\left(| x| )u=| u\\hspace{-0.25em}{| }^{2}u\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\\\ u\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}).\\end{array}\\right. Our results extend the existence result from the super-cubic case to the cubic case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1030 - 1047"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0225","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , \left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}| \nabla u\hspace{-0.25em}{| }^{2}{\rm{d}}x\right)\Delta u+V\left(| x| )u=| u\hspace{-0.25em}{| }^{2}u\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}),\end{array}\right. where a , b > 0 , N = 2 a,b\gt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| \nabla u\hspace{-0.25em}{| }_{{L}^{2}\left({{\mathbb{R}}}^{N})}^{2}\Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | u\hspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}\left({{\mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } \left\{{b}_{n}\right\} with b n → 0 + , {b}_{n}\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}\left({{\mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . \left\{\begin{array}{l}-a\Delta u+V\left(| x| )u=| u\hspace{-0.25em}{| }^{2}u\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}).\end{array}\right. Our results extend the existence result from the super-cubic case to the cubic case.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.