{"title":"Time Compression in Virtual Reality","authors":"G. Mullen, Nicolas Davidenko","doi":"10.1163/22134468-BJA10034","DOIUrl":null,"url":null,"abstract":"Virtual-reality (VR) users and developers have informally reported that time seems to pass more quickly while playing games in VR. We refer to this phenomenon as time compression: a longer real duration is compressed into a shorter perceived experience. To investigate this effect, we created two versions of a labyrinth-like game. The versions are identical in their content and mode of control but differ in their display type: one was designed to be played in VR, and the other on a conventional monitor (CM). Participants were asked to estimate time prospectively using an interval production method. Participants played each version of the game for a perceived five-minute interval, and the actual durations of the intervals they produced were compared between display conditions. We found that in the first block, participants in the VR condition played for an average of 72.6 more seconds than participants in the CM condition before feeling that five minutes had passed. This amounts to perceived five-minute intervals in VR containing 28.5% more actual time than perceived five-minute intervals in CM. However, the effect appeared to be reversed in the second block when participants switched display conditions, suggesting large novelty and anchoring effects, and demonstrating the importance of using between-subjects designs in interval production experiments. Overall, our results suggest that VR displays do produce a significant time compression effect. We discuss a VR-induced reduction in bodily awareness as a potential explanation for how this effect is mediated and outline some implications and suggestions for follow-up experiments.","PeriodicalId":29927,"journal":{"name":"Timing & Time Perception","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Timing & Time Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/22134468-BJA10034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Virtual-reality (VR) users and developers have informally reported that time seems to pass more quickly while playing games in VR. We refer to this phenomenon as time compression: a longer real duration is compressed into a shorter perceived experience. To investigate this effect, we created two versions of a labyrinth-like game. The versions are identical in their content and mode of control but differ in their display type: one was designed to be played in VR, and the other on a conventional monitor (CM). Participants were asked to estimate time prospectively using an interval production method. Participants played each version of the game for a perceived five-minute interval, and the actual durations of the intervals they produced were compared between display conditions. We found that in the first block, participants in the VR condition played for an average of 72.6 more seconds than participants in the CM condition before feeling that five minutes had passed. This amounts to perceived five-minute intervals in VR containing 28.5% more actual time than perceived five-minute intervals in CM. However, the effect appeared to be reversed in the second block when participants switched display conditions, suggesting large novelty and anchoring effects, and demonstrating the importance of using between-subjects designs in interval production experiments. Overall, our results suggest that VR displays do produce a significant time compression effect. We discuss a VR-induced reduction in bodily awareness as a potential explanation for how this effect is mediated and outline some implications and suggestions for follow-up experiments.
期刊介绍:
Timing & Time Perception aims to be the forum for all psychophysical, neuroimaging, pharmacological, computational, and theoretical advances on the topic of timing and time perception in humans and other animals. We envision a multidisciplinary approach to the topics covered, including the synergy of: Neuroscience and Philosophy for understanding the concept of time, Cognitive Science and Artificial Intelligence for adapting basic research to artificial agents, Psychiatry, Neurology, Behavioral and Computational Sciences for neuro-rehabilitation and modeling of the disordered brain, to name just a few. Given the ubiquity of interval timing, this journal will host all basic studies, including interdisciplinary and multidisciplinary works on timing and time perception and serve as a forum for discussion and extension of current knowledge on the topic.