Pascal Hauenstein , Iosif Mangoufis-Giasin , Dominik Seeberger , Peter Wasserscheid , Karl J.J. Mayrhofer , Ioannis Katsounaros , Simon Thiele
{"title":"Impact of catalyst loading, ionomer content, and carbon support on the performance of direct isopropanol fuel cells","authors":"Pascal Hauenstein , Iosif Mangoufis-Giasin , Dominik Seeberger , Peter Wasserscheid , Karl J.J. Mayrhofer , Ioannis Katsounaros , Simon Thiele","doi":"10.1016/j.powera.2021.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid Organic Hydrogen Carriers (LOHC) offer a promising solution for hydrogen storage in the existing infrastructure for conventional fuels. Within this framework, the isopropanol/acetone couple as a light-LOHC system is used to generate electricity in a direct isopropanol fuel cell (DIFC). This work focuses on the impact of catalyst loading, ionomer content and catalyst support on the performance of DIFCs. We achieve a performance rise from 95 mW cm<sup>-2</sup> to 219 mW cm<sup>-2</sup> under air operation by increasing the anode catalyst loading from 0.5 mg cm<sup>-2</sup> to 4 mg cm<sup>-2</sup>, which can be attributed to the increased abundance of active catalyst sites with higher loadings. In contrast, we find that the cathode loading for the oxygen reduction reaction (ORR) plays a minor role in the performance of DIFCs. Therefore, the cathode loading can be minimized to decrease the total amount of platinum-group metals and, consequently, to save cost. It was also found that an ionomer content of 30% on the anode side is optimal. Additionally, different carbon supports were investigated, where advanced high surface area carbon support showed superior performance to <span>Vulcan</span> with an increase of 20% in power density, motivating the development of new carbon supports for DIFCs.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100064"},"PeriodicalIF":5.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100064","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Liquid Organic Hydrogen Carriers (LOHC) offer a promising solution for hydrogen storage in the existing infrastructure for conventional fuels. Within this framework, the isopropanol/acetone couple as a light-LOHC system is used to generate electricity in a direct isopropanol fuel cell (DIFC). This work focuses on the impact of catalyst loading, ionomer content and catalyst support on the performance of DIFCs. We achieve a performance rise from 95 mW cm-2 to 219 mW cm-2 under air operation by increasing the anode catalyst loading from 0.5 mg cm-2 to 4 mg cm-2, which can be attributed to the increased abundance of active catalyst sites with higher loadings. In contrast, we find that the cathode loading for the oxygen reduction reaction (ORR) plays a minor role in the performance of DIFCs. Therefore, the cathode loading can be minimized to decrease the total amount of platinum-group metals and, consequently, to save cost. It was also found that an ionomer content of 30% on the anode side is optimal. Additionally, different carbon supports were investigated, where advanced high surface area carbon support showed superior performance to Vulcan with an increase of 20% in power density, motivating the development of new carbon supports for DIFCs.