Alexander Schoen, A. Byerly, E. C. Santos, Z. Ben-Miled
{"title":"Route-Sensitive Fuel Consumption Models for Heavy-Duty Vehicles","authors":"Alexander Schoen, A. Byerly, E. C. Santos, Z. Ben-Miled","doi":"10.4271/02-14-01-0006","DOIUrl":null,"url":null,"abstract":"This article investigates the ability of data-driven models to estimate instantaneous fuel consumption over 1 km road segments from different routes for different heavy-duty vehicles from the same fleet. Models are created using three different techniques: parametric, linear regression, and artificial neural networks. The proposed models use features derived from vehicle speed, mass, and road grade, which can be easily obtained from telematics devices, in addition to power take-off (PTO) active time, which is needed to capture the power requested by accessories in several heavy-duty vehicles. The robustness of these models with respect to the training data selection is improved by using k-fold cross-validation. Moreover, the inherent underestimation or overestimation bias of the model is calculated and used to offset the fuel consumption estimates for new routes. The study shows that the target application dictates the choice of model features. In fact, the results indicate that depending on the vocation the linear regression and neural network models, which use the same input features, are able to adequately differentiate between the fuel consumption of two","PeriodicalId":45281,"journal":{"name":"SAE International Journal of Commercial Vehicles","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Commercial Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/02-14-01-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
This article investigates the ability of data-driven models to estimate instantaneous fuel consumption over 1 km road segments from different routes for different heavy-duty vehicles from the same fleet. Models are created using three different techniques: parametric, linear regression, and artificial neural networks. The proposed models use features derived from vehicle speed, mass, and road grade, which can be easily obtained from telematics devices, in addition to power take-off (PTO) active time, which is needed to capture the power requested by accessories in several heavy-duty vehicles. The robustness of these models with respect to the training data selection is improved by using k-fold cross-validation. Moreover, the inherent underestimation or overestimation bias of the model is calculated and used to offset the fuel consumption estimates for new routes. The study shows that the target application dictates the choice of model features. In fact, the results indicate that depending on the vocation the linear regression and neural network models, which use the same input features, are able to adequately differentiate between the fuel consumption of two