Long-Term Heat Flux Formation Of The Large Russian Arctic Rivers And Its Transformations In Estuaries Under The Influence Of Climate-Induced And Dam-Induced Effects

Q2 Agricultural and Biological Sciences Geography, Environment, Sustainability Pub Date : 2023-01-18 DOI:10.24057/2071-9388-2022-105
A. Vasilenko, D. Magritsky, N. Frolova, Artem I. Shevchenko
{"title":"Long-Term Heat Flux Formation Of The Large Russian Arctic Rivers And Its Transformations In Estuaries Under The Influence Of Climate-Induced And Dam-Induced Effects","authors":"A. Vasilenko, D. Magritsky, N. Frolova, Artem I. Shevchenko","doi":"10.24057/2071-9388-2022-105","DOIUrl":null,"url":null,"abstract":"The heat flux of the large rivers flowing into the Arctic seas of Russia plays an essential role in the thermal and ice regime of the lower reaches of these rivers and the southern part of the Arctic seas. However, estimates of the total value of heat flux and its spatial-temporal distribution require clarification. In this research, we analyzed monthly, and yearly water temperature data from 55 gauges and water flow data from 35 gauges in the lower reaches of the rivers of the Russian Arctic northerner of 60 N. These rivers are: Onega, Northern Dvina, Mezen, Pechora, Ob, Nadym, Pur, Taz, Yenisei, Khatanga, Anabar, Olenek, Lena, Yana, Indigirka, Alazeya, Kolyma and their main tributaries. The collected data series covers 1930-2018, focusing more on 1960–2018. We used Spearman trend tests and Mann-Whitney U-test to clarify changes in the thermal regime of study rivers. Our estimations showed that heat flux did not significantly increase in the past three decades on most rivers except Yenisei and Yana lowlands. Water temperatures on rivers monotonically increased after 1960, especially in May and June, but without statistical significance. The role of dams in the water temperature regime is observed for nearly 500 km lower dams, but it is not observed in their lowlands and mouths. We also identified the decrease in water temperatures and heat flux in river lowlands, estuaries and deltas up to 25% for Yenisei lowlands.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2022-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The heat flux of the large rivers flowing into the Arctic seas of Russia plays an essential role in the thermal and ice regime of the lower reaches of these rivers and the southern part of the Arctic seas. However, estimates of the total value of heat flux and its spatial-temporal distribution require clarification. In this research, we analyzed monthly, and yearly water temperature data from 55 gauges and water flow data from 35 gauges in the lower reaches of the rivers of the Russian Arctic northerner of 60 N. These rivers are: Onega, Northern Dvina, Mezen, Pechora, Ob, Nadym, Pur, Taz, Yenisei, Khatanga, Anabar, Olenek, Lena, Yana, Indigirka, Alazeya, Kolyma and their main tributaries. The collected data series covers 1930-2018, focusing more on 1960–2018. We used Spearman trend tests and Mann-Whitney U-test to clarify changes in the thermal regime of study rivers. Our estimations showed that heat flux did not significantly increase in the past three decades on most rivers except Yenisei and Yana lowlands. Water temperatures on rivers monotonically increased after 1960, especially in May and June, but without statistical significance. The role of dams in the water temperature regime is observed for nearly 500 km lower dams, but it is not observed in their lowlands and mouths. We also identified the decrease in water temperatures and heat flux in river lowlands, estuaries and deltas up to 25% for Yenisei lowlands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候和大坝效应影响下俄罗斯北极大型河流的长期热通量形成及其河口变化
流入俄罗斯北极海域的大河的热通量在这些河流下游和北极海域南部的热力和冰况中起着至关重要的作用。然而,对热通量总价值及其时空分布的估计需要澄清。在这项研究中,我们分析了俄罗斯北极北部60 n的河流下游的55个水位计的月、年水温数据和35个水位计的流量数据。这些河流是:奥涅加河、北德维纳河、梅岑河、佩霍拉河、奥布河、纳德姆河、普尔河、塔兹河、叶尼塞河、哈坦加河、阿纳巴尔河、奥列涅克河、莉娜河、亚纳河、印吉尔卡河、阿拉泽亚河、科雷马河及其主要支流。收集的数据系列涵盖1930-2018年,重点关注1960-2018年。我们使用Spearman趋势检验和Mann-Whitney u检验来澄清研究河流的热状态变化。结果表明,除叶尼塞和雅纳低地外,大部分河流的热通量在过去30年没有显著增加。1960年以后河流水温单调升高,特别是5月和6月,但无统计学意义。大坝对水温变化的影响在近500公里下游的大坝中得到了观察,但在其低地和河口没有观察到。叶尼塞河低地、河口和三角洲的水温和热通量下降幅度高达25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geography, Environment, Sustainability
Geography, Environment, Sustainability Social Sciences-Geography, Planning and Development
CiteScore
2.50
自引率
0.00%
发文量
37
审稿时长
12 weeks
期刊介绍: Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.
期刊最新文献
Modeling land use change of mid-sized cities in the process of metropolization. Case study La Serena-Coquimbo conurbation, Chile Land suitability of coffee cultivation under climate change influence in the Ecuadorian Amazon The 3Ps (profits, problems & planning) of dams as inevitable developmental source: a review GIS mapping of the soil cover of an urbanized territory: drainage basin of the Setun river in the west of Moscow (Russian Federation) Unraveling the spatial dynamics: exploring the urban form characteristics and COVID-19 cases in Yogyakarta city, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1