A Review of Techniques to Mitigate Jamming in Electromechanical Actuators for Safety Critical Applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-12-20 DOI:10.36001/IJPHM.2018.V9I3.2749
Yameen M. Hussain, S. Burrow, Leigh Henson, P. Keogh
{"title":"A Review of Techniques to Mitigate Jamming in Electromechanical Actuators for Safety Critical Applications","authors":"Yameen M. Hussain, S. Burrow, Leigh Henson, P. Keogh","doi":"10.36001/IJPHM.2018.V9I3.2749","DOIUrl":null,"url":null,"abstract":"This paper presents a review of techniques to mitigate jamming in Electromechanical Actuators (EMA) for safety critical applications in aerospace. Published progress to date is evaluated, with the remaining challenges highlighted. Through the use of Hierarchical Process Modelling (HPM), two key approaches to mitigate jamming were identified: (1) Fault Diagnostics (FD) and (2) Fault tolerant design. The development of a fault tolerant EMA system is currently at an early stage for implementation within safety critical systems due to the increased complexity of such systems (for example the anti-jamming system may require FD functionality itself). Challenges also exist for FD approaches particularly in achieving a robust means of fault detection. It is proposed that a hybrid FD approach, using a combination of model based and data-driven techniques to predict the onset of jamming, would be beneficial in capturing the discrepancies between the predicted and observed behaviour used to isolate and identify faults. Furthermore, several aspects of modelling and of data-driven methodologies for FD in the literature omit potentially important behaviours, and recommendations are made to improve upon this. For example, the simulation of faults in test stand analysis and the fidelity modelling of the motor and mechanical components are key areas to develop.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2018.V9I3.2749","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a review of techniques to mitigate jamming in Electromechanical Actuators (EMA) for safety critical applications in aerospace. Published progress to date is evaluated, with the remaining challenges highlighted. Through the use of Hierarchical Process Modelling (HPM), two key approaches to mitigate jamming were identified: (1) Fault Diagnostics (FD) and (2) Fault tolerant design. The development of a fault tolerant EMA system is currently at an early stage for implementation within safety critical systems due to the increased complexity of such systems (for example the anti-jamming system may require FD functionality itself). Challenges also exist for FD approaches particularly in achieving a robust means of fault detection. It is proposed that a hybrid FD approach, using a combination of model based and data-driven techniques to predict the onset of jamming, would be beneficial in capturing the discrepancies between the predicted and observed behaviour used to isolate and identify faults. Furthermore, several aspects of modelling and of data-driven methodologies for FD in the literature omit potentially important behaviours, and recommendations are made to improve upon this. For example, the simulation of faults in test stand analysis and the fidelity modelling of the motor and mechanical components are key areas to develop.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓解安全关键应用机电执行器干扰的技术综述
本文综述了在航空航天安全关键应用中减轻机电执行器(EMA)干扰的技术。对迄今为止公布的进展情况进行了评估,并强调了剩余的挑战。通过使用分层过程建模(HPM),确定了两种减轻干扰的关键方法:(1)故障诊断(FD)和(2)容错设计。由于这种系统的复杂性增加,容错EMA系统的开发目前处于在安全关键系统中实施的早期阶段(例如,抗干扰系统本身可能需要FD功能)。FD方法也存在挑战,特别是在实现稳健的故障检测手段方面。提出了一种混合FD方法,将基于模型的技术和数据驱动的技术相结合来预测干扰的发生,这将有助于捕捉用于隔离和识别故障的预测和观察行为之间的差异。此外,文献中FD建模和数据驱动方法的几个方面省略了潜在的重要行为,并提出了改进建议。例如,试验台分析中的故障模拟以及电机和机械部件的保真度建模是需要开发的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1