Optimal consequence management of pollution intrusion into water distribution network considering demand variation and pipelines' leakage: a case study

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-08-31 DOI:10.2166/hydro.2023.003
Seyed Ghasem Razavi, S. Nazif, M. Ghorbani
{"title":"Optimal consequence management of pollution intrusion into water distribution network considering demand variation and pipelines' leakage: a case study","authors":"Seyed Ghasem Razavi, S. Nazif, M. Ghorbani","doi":"10.2166/hydro.2023.003","DOIUrl":null,"url":null,"abstract":"\n \n To ensure the preservation of public health during periods of water distribution network (WDN) contamination, implementing effective consequence management (CM) plans is crucial. This study aimed to minimize the number of operational interventions and mitigate adverse effects on public health by considering WDN leakage and demand changes during contamination events. Surveys conducted during the contamination period revealed an impressive 88% reduction in water consumption. Subsequently, a real case study focusing on a segment of Tehran's WDN in Iran's capital city was conducted, examining four scenarios to test the proposed method. Without employing leakage and demand reduction strategies, the total contamination exposure amounted to approximately 184 kg. However, by incorporating water demand reduction, leakage, and their simultaneous simulation, maximum contamination exposures of 154.4, 171, and 124.4 kg were respectively achieved. Furthermore, it was found that the optimal CM plan required significantly different valve configurations. Neglecting demand changes and leaks in the CM plan led to inaccurate calculations regarding hydraulic and quality status, pollution levels in the network, and contamination exposure for WDN users; therefore, erroneous decision-making.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the preservation of public health during periods of water distribution network (WDN) contamination, implementing effective consequence management (CM) plans is crucial. This study aimed to minimize the number of operational interventions and mitigate adverse effects on public health by considering WDN leakage and demand changes during contamination events. Surveys conducted during the contamination period revealed an impressive 88% reduction in water consumption. Subsequently, a real case study focusing on a segment of Tehran's WDN in Iran's capital city was conducted, examining four scenarios to test the proposed method. Without employing leakage and demand reduction strategies, the total contamination exposure amounted to approximately 184 kg. However, by incorporating water demand reduction, leakage, and their simultaneous simulation, maximum contamination exposures of 154.4, 171, and 124.4 kg were respectively achieved. Furthermore, it was found that the optimal CM plan required significantly different valve configurations. Neglecting demand changes and leaks in the CM plan led to inaccurate calculations regarding hydraulic and quality status, pollution levels in the network, and contamination exposure for WDN users; therefore, erroneous decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑需求变化和管道泄漏的配水管网污染入侵后果优化管理:一个案例研究
为了确保在供水管网污染期间保护公众健康,实施有效的后果管理(CM)计划至关重要。本研究旨在通过考虑WDN泄漏和污染事件期间的需求变化,最大限度地减少操作干预的数量,减轻对公众健康的不利影响。在污染期间进行的调查显示,用水量减少了88%。随后,对伊朗首都德黑兰WDN的一个部分进行了实际案例研究,研究了四种情况来测试所提出的方法。在不采用泄漏和减少需求策略的情况下,总污染暴露量约为184公斤。然而,通过结合水需求减少、泄漏及其同时模拟,最大污染暴露分别达到154.4 kg、171 kg和124.4 kg。此外,发现最优的CM方案需要显着不同的阀门配置。忽略CM计划中的需求变化和泄漏导致对水力和质量状况、网络污染水平和WDN用户污染暴露的不准确计算;因此,错误的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1