Xin Hu, Shubin Xie, Xin Ji, Xuming Chang, Yi Qiu, Bo Li, Zhijun Liu, Weidong Wang
{"title":"Behavioral Model With Multiple States Based on Deep Neural Network for Power Amplifiers","authors":"Xin Hu, Shubin Xie, Xin Ji, Xuming Chang, Yi Qiu, Bo Li, Zhijun Liu, Weidong Wang","doi":"10.1109/LMWC.2022.3186062","DOIUrl":null,"url":null,"abstract":"Digital predistortion is widely used to compensate the nonlinear distortion of power amplifiers (PAs). Among the digital predistortion methods, the polynomial or deep neural networks (DNNs) models are only adopted with one specific state. When the operating conditions of PAs change, it is necessary to retrain and update the coefficients of the PA model. The generalization ability of the DNN models cannot be presented. To address this issue, this letter proposes one new modeling method that can build one generalized PA model with multiple states based on DNN. This method embeds a set of coding vectors representing corresponding states to build the generalized model. Compared with the traditional DNN model, experimental results show that the proposed method can construct the PA model containing multiple states while ensuring good modeling performance.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1363-1366"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3186062","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
Digital predistortion is widely used to compensate the nonlinear distortion of power amplifiers (PAs). Among the digital predistortion methods, the polynomial or deep neural networks (DNNs) models are only adopted with one specific state. When the operating conditions of PAs change, it is necessary to retrain and update the coefficients of the PA model. The generalization ability of the DNN models cannot be presented. To address this issue, this letter proposes one new modeling method that can build one generalized PA model with multiple states based on DNN. This method embeds a set of coding vectors representing corresponding states to build the generalized model. Compared with the traditional DNN model, experimental results show that the proposed method can construct the PA model containing multiple states while ensuring good modeling performance.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.