Seongju Kim, Raphaël Wenger, Olivier Bürgy, G. Balestra, Unyong Jeong, Sungjune Jung
{"title":"Predicting inkjet jetting behavior for viscoelastic inks using machine learning","authors":"Seongju Kim, Raphaël Wenger, Olivier Bürgy, G. Balestra, Unyong Jeong, Sungjune Jung","doi":"10.1088/2058-8585/acee94","DOIUrl":null,"url":null,"abstract":"Inkjet printing offers significant potential for additive manufacturing technology. However, predicting jetting behavior is challenging because the rheological properties of functional inks commonly used in the industry are overlooked in printability maps that rely on the Ohnesorge and Weber numbers. We present a machine learning-based predictive model for jetting behavior that incorporates the Deborah number, the Ohnesorge number, and the waveform parameters. Ten viscoelastic inks have been prepared and their storage modulus and loss modulus measured, showing good agreement with those obtained by the theoretical Maxwell model. With the relaxation time of the viscoelastic ink obtained by analyzing the Maxwell model equations, the Deborah number could be calculated. We collected a large data set of jetting behaviors of each ink with various waveforms using drop watching system. Three distinct machine learning models were employed to build predictive models. After comparing the prediction accuracy of the machine learning models, we found that multilayer perceptron showed outstanding prediction accuracy. The final predictive model exhibited remarkable accuracy for an unknown ink based on waveform parameters, and the correlation between jetting behavior and ink properties was reasonable. Finally, we developed a printability map characterized by the Ohnesorge and Deborah numbers through the proposed predictive model for viscoelastic fluids and the chosen industrial printhead.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acee94","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inkjet printing offers significant potential for additive manufacturing technology. However, predicting jetting behavior is challenging because the rheological properties of functional inks commonly used in the industry are overlooked in printability maps that rely on the Ohnesorge and Weber numbers. We present a machine learning-based predictive model for jetting behavior that incorporates the Deborah number, the Ohnesorge number, and the waveform parameters. Ten viscoelastic inks have been prepared and their storage modulus and loss modulus measured, showing good agreement with those obtained by the theoretical Maxwell model. With the relaxation time of the viscoelastic ink obtained by analyzing the Maxwell model equations, the Deborah number could be calculated. We collected a large data set of jetting behaviors of each ink with various waveforms using drop watching system. Three distinct machine learning models were employed to build predictive models. After comparing the prediction accuracy of the machine learning models, we found that multilayer perceptron showed outstanding prediction accuracy. The final predictive model exhibited remarkable accuracy for an unknown ink based on waveform parameters, and the correlation between jetting behavior and ink properties was reasonable. Finally, we developed a printability map characterized by the Ohnesorge and Deborah numbers through the proposed predictive model for viscoelastic fluids and the chosen industrial printhead.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.