{"title":"Electronic component detection based on image sample generation","authors":"Hao Wu, Quanquan Lv, Jian Yang, Xiaodong Yan, Xiangrong Xu","doi":"10.1108/SSMT-08-2020-0036","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to propose a deep learning model that can be used to expand the number of samples. In the process of manufacturing and assembling electronic components on the printed circuit board in the surface mount technology production line, it is relatively easy to collect non-defective samples, but it is difficult to collect defective samples within a certain period of time. Therefore, the number of non-defective components is much greater than the number of defective components. In the process of training the defect detection method of electronic components based on deep learning, a large number of defective and non-defective samples need to be input at the same time.\n\n\nDesign/methodology/approach\nTo obtain enough electronic components samples required for training, a method based on the generative adversarial network (GAN) to generate training samples is proposed, and then the generated samples and real samples are used to train the convolutional neural networks (CNN) together to obtain the best detection results.\n\n\nFindings\nThe experimental results show that the defect recognition method using GAN and CNN can not only expand the sample images of the electronic components required for the training model but also accurately classify the defect types.\n\n\nOriginality/value\nTo solve the problem of unbalanced sample types in component inspection, a GAN-based method is proposed to generate different types of training component samples and then the generated samples and real samples are used to train the CNN together to obtain the best detection results.\n","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/SSMT-08-2020-0036","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
This paper aims to propose a deep learning model that can be used to expand the number of samples. In the process of manufacturing and assembling electronic components on the printed circuit board in the surface mount technology production line, it is relatively easy to collect non-defective samples, but it is difficult to collect defective samples within a certain period of time. Therefore, the number of non-defective components is much greater than the number of defective components. In the process of training the defect detection method of electronic components based on deep learning, a large number of defective and non-defective samples need to be input at the same time.
Design/methodology/approach
To obtain enough electronic components samples required for training, a method based on the generative adversarial network (GAN) to generate training samples is proposed, and then the generated samples and real samples are used to train the convolutional neural networks (CNN) together to obtain the best detection results.
Findings
The experimental results show that the defect recognition method using GAN and CNN can not only expand the sample images of the electronic components required for the training model but also accurately classify the defect types.
Originality/value
To solve the problem of unbalanced sample types in component inspection, a GAN-based method is proposed to generate different types of training component samples and then the generated samples and real samples are used to train the CNN together to obtain the best detection results.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.