Planning, implementing, and evaluating an online group-model-building workshop during the COVID-19 pandemic: celebrating successes and learning from shortcomings.
Kyrah K Brown, Michael Kenneth Lemke, Saeideh Fallah-Fini, Ariel Hall, Mercy Obasanya
{"title":"Planning, implementing, and evaluating an online group-model-building workshop during the COVID-19 pandemic: celebrating successes and learning from shortcomings.","authors":"Kyrah K Brown, Michael Kenneth Lemke, Saeideh Fallah-Fini, Ariel Hall, Mercy Obasanya","doi":"10.1002/sdr.1704","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":51500,"journal":{"name":"System Dynamics Review","volume":"38 1","pages":"93-112"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System Dynamics Review","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1002/sdr.1704","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
公共卫生研究人员越来越多地转向系统动力学(SD)建模,以解释形成和延续健康差异的潜在动态复杂因果机制(Apostolopoulos等人,2020;Diez-Roux,2011;Hammond等人,2017)。作为SD模型开发的一种参与性方法,系统动力学群体模型构建(SD GMB)有可能提高利益相关者对公共卫生问题的系统性质的理解,并可以最大限度地提高利益相关方的认同(Ballard et al.,2020;Mui et al.,2019)。SD GMB研讨会通常以面对面的形式进行,主持人可以有利地让利益相关者参与破冰或特定文化的活动,这通常有助于在主持人和参与者之间建立融洽关系(Gerritsen等人,2020),并可以使用挂板、白板、,以及印刷材料,让利益相关者参与趋同和发散的任务(Hovmand等人,2015)。随着新冠肺炎大流行带来的无数干扰,面对面的SD GMB研讨会通常变得不切实际(Wilkerson et al.,2020)。例如,由于公共卫生授权和对新冠肺炎传播的普遍担忧,利益相关者变得更难接触(Süsser等人,2021)。因此,研究人员转向了SD GMB研讨会的在线促进(Wilkerson
期刊介绍:
The System Dynamics Review exists to communicate to a wide audience advances in the application of the perspectives and methods of system dynamics to societal, technical, managerial, and environmental problems. The Review publishes: advances in mathematical modelling and computer simulation of dynamic feedback systems; advances in methods of policy analysis based on information feedback and circular causality; generic structures (dynamic feedback systems that support particular widely applicable behavioural insights); system dynamics contributions to theory building in the social and natural sciences; policy studies and debate emphasizing the role of feedback and circular causality in problem behaviour.