Tomas Poloni, P. Dickinson, Jianrui Zhang, Peng Zhou
{"title":"Self-Adaptive Air-path Health Management for a Heavy Duty-Diesel Engine","authors":"Tomas Poloni, P. Dickinson, Jianrui Zhang, Peng Zhou","doi":"10.36001/ijphm.2023.v14i3.3118","DOIUrl":null,"url":null,"abstract":"This paper presents the air-path health management strategy with the ability to estimate the mass-flows and mitigate (adapt to) the air-path faults in the exhaust system of a heavy-duty diesel combustion engine equipped with a twin-scroll turbine. Based on the engine component models applied in the quasi-steady-state mass-balancing approach, two main engine mass-flow quantities are estimated: the Air mass-flow (AMF) and the Exhaust gas recirculation (EGR) mass-flow. The health management system is monitoring for three kinds of air-path faults that can occur through the combustion engine operation, related either to the after-treatment system, EGR valve, or to the turbine balance valve hardware. For each fault, a fault-mitigation strategy based on in-observer-reconfigurable mass-balance equations with excluded faulty component model and utilized exhaust pressure sensor is proposed. The applied observer is using the iterated Kalman filter (IKF) as the core fault mitigating solver for the quasi-steady-state mass-balancing problem. It is further demonstrated how the individual faults are robustly isolated using the Sequential Probability Ratio Test (SPRT). The strategy and results are validated using the test cycle driving data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i3.3118","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the air-path health management strategy with the ability to estimate the mass-flows and mitigate (adapt to) the air-path faults in the exhaust system of a heavy-duty diesel combustion engine equipped with a twin-scroll turbine. Based on the engine component models applied in the quasi-steady-state mass-balancing approach, two main engine mass-flow quantities are estimated: the Air mass-flow (AMF) and the Exhaust gas recirculation (EGR) mass-flow. The health management system is monitoring for three kinds of air-path faults that can occur through the combustion engine operation, related either to the after-treatment system, EGR valve, or to the turbine balance valve hardware. For each fault, a fault-mitigation strategy based on in-observer-reconfigurable mass-balance equations with excluded faulty component model and utilized exhaust pressure sensor is proposed. The applied observer is using the iterated Kalman filter (IKF) as the core fault mitigating solver for the quasi-steady-state mass-balancing problem. It is further demonstrated how the individual faults are robustly isolated using the Sequential Probability Ratio Test (SPRT). The strategy and results are validated using the test cycle driving data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.