{"title":"A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms","authors":"Lu Shun Wang, T. Yang, Xiao Long Yang","doi":"10.1515/anona-2022-0276","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: (0.1) − Δ u + V 1 ( x ) u = η 1 η 1 + η 2 ∣ u ∣ η 1 − 2 u ∣ v ∣ η 2 ∣ x ′ ∣ + α α + β Q ( x ) ∣ u ∣ α − 2 u ∣ v ∣ β , − Δ v + V 2 ( x ) v = η 2 η 1 + η 2 ∣ v ∣ η 2 − 2 v ∣ u ∣ η 1 ∣ x ′ ∣ + β α + β Q ( x ) ∣ v ∣ β − 2 v ∣ u ∣ α , \\left\\{\\begin{array}{c}-\\Delta u+{V}_{1}\\left(x)u=\\frac{{\\eta }_{1}}{{\\eta }_{1}+{\\eta }_{2}}\\frac{{| u| }^{{\\eta }_{1}-2}u{| v| }^{{\\eta }_{2}}}{| x^{\\prime} | }+\\frac{\\alpha }{\\alpha +\\beta }Q\\left(x)| u{| }^{\\alpha -2}u| v{| }^{\\beta },\\\\ -\\Delta v+{V}_{2}\\left(x)v=\\frac{{\\eta }_{2}}{{\\eta }_{1}+{\\eta }_{2}}\\frac{{| v| }^{{\\eta }_{2}-2}v{| u| }^{{\\eta }_{1}}}{| x^{\\prime} | }+\\frac{\\beta }{\\alpha +\\beta }Q\\left(x){| v| }^{\\beta -2}v{| u| }^{\\alpha },\\end{array}\\right. where n ≥ 3 n\\ge 3 , 2 ≤ m < n 2\\le m\\lt n , x ≔ ( x ′ , x ″ ) ∈ R m × R n − m x:= \\left(x^{\\prime} ,{x}^{^{\\prime\\prime} })\\in {{\\mathbb{R}}}^{m}\\times {{\\mathbb{R}}}^{n-m} , η 1 , η 2 > 1 {\\eta }_{1},{\\eta }_{2}\\gt 1 , and η 1 + η 2 = 2 ( n − 1 ) n − 2 {\\eta }_{1}+{\\eta }_{2}=\\frac{2\\left(n-1)}{n-2} , α , β > 1 \\alpha ,\\beta \\gt 1 and α + β < 2 n n − 2 \\alpha +\\beta \\lt \\frac{2n}{n-2} , and V 1 ( x ) , V 2 ( x ) , Q ( x ) ∈ C ( R n ) {V}_{1}\\left(x),{V}_{2}\\left(x),Q\\left(x)\\in C\\left({{\\mathbb{R}}}^{n}) . Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the “Vanishing” lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0276","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: (0.1) − Δ u + V 1 ( x ) u = η 1 η 1 + η 2 ∣ u ∣ η 1 − 2 u ∣ v ∣ η 2 ∣ x ′ ∣ + α α + β Q ( x ) ∣ u ∣ α − 2 u ∣ v ∣ β , − Δ v + V 2 ( x ) v = η 2 η 1 + η 2 ∣ v ∣ η 2 − 2 v ∣ u ∣ η 1 ∣ x ′ ∣ + β α + β Q ( x ) ∣ v ∣ β − 2 v ∣ u ∣ α , \left\{\begin{array}{c}-\Delta u+{V}_{1}\left(x)u=\frac{{\eta }_{1}}{{\eta }_{1}+{\eta }_{2}}\frac{{| u| }^{{\eta }_{1}-2}u{| v| }^{{\eta }_{2}}}{| x^{\prime} | }+\frac{\alpha }{\alpha +\beta }Q\left(x)| u{| }^{\alpha -2}u| v{| }^{\beta },\\ -\Delta v+{V}_{2}\left(x)v=\frac{{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\frac{{| v| }^{{\eta }_{2}-2}v{| u| }^{{\eta }_{1}}}{| x^{\prime} | }+\frac{\beta }{\alpha +\beta }Q\left(x){| v| }^{\beta -2}v{| u| }^{\alpha },\end{array}\right. where n ≥ 3 n\ge 3 , 2 ≤ m < n 2\le m\lt n , x ≔ ( x ′ , x ″ ) ∈ R m × R n − m x:= \left(x^{\prime} ,{x}^{^{\prime\prime} })\in {{\mathbb{R}}}^{m}\times {{\mathbb{R}}}^{n-m} , η 1 , η 2 > 1 {\eta }_{1},{\eta }_{2}\gt 1 , and η 1 + η 2 = 2 ( n − 1 ) n − 2 {\eta }_{1}+{\eta }_{2}=\frac{2\left(n-1)}{n-2} , α , β > 1 \alpha ,\beta \gt 1 and α + β < 2 n n − 2 \alpha +\beta \lt \frac{2n}{n-2} , and V 1 ( x ) , V 2 ( x ) , Q ( x ) ∈ C ( R n ) {V}_{1}\left(x),{V}_{2}\left(x),Q\left(x)\in C\left({{\mathbb{R}}}^{n}) . Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the “Vanishing” lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.